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Introduction

As most who are reading this book already know, the UIL Number Sense exam is an intense 10 minute test
where 80 challenging mental math problems test a student’s knowledge of topics ranging from simple mul-
tiplication, geometry, algebraic manipulation, to calculus. Although the exam is grueling (with 7.5 seconds
per problem, it is hard to imagine it being easy!), there are various tricks to alleviate some of the heavy
computations associated with the test. The purpose of writing this book is to explore a variety of these
“shortcuts” as well as their applications in order to better prepare the student for taking the Number Sense
test. In addition, this book is a source of practice problems so that better proficiency with many different
types of problems can be reached leaving more time for the harder and more unique test questions.

The book will be divided into three sections: numerical tricks, necessary memorizations (ranging from con-
versions to formulas), and miscellaneous topics. The difficulty of tricks discussed in the text range from some
of the most basic (11’s trick, Subtracting Reverses, etc...) to the more advanced that are on the most recent
exams. Although this book will provide, hopefully, adequate understanding of a wide variety of commonly
used tricks, it is not a replacement for practicing and discovering methods that you feel the most comfortable
with. In order to solidify everything exhibited in this book, regular group and individual practice sessions
are recommended as well as participation in multiple competitions.

The best way to approach this book would be to read through all the instructional material first then go
back and do the practice problems in each section. The reason why this is needed is because many sections
deal with combinations of problems which are discussed later in the book. Also, all problems in bold reflect
questions taken from the state competition exams. Similarly, to maintain consistent nomenclature, all (*)
problems are approximation problems where ±5% accuracy is needed.

It should be noted that the tricks exhibited here could very easily not be the faster method for doing
problems. I wrote down tricks and procedures that I follow, and since I am only human, there could very
easily be faster more to-the-point tricks that I haven’t noticed. In fact, as I’ve been gleaning past tests to
find sample problems I’ve noticed faster methods on how to do some problems (and I’ve updated the book
accordingly). One of the reasons why Number Sense is so great is that there is usually a variety of methods
which can be used! This is apparent mostly in the practice problems. I tried to choose problems which
reflects the procedures outlined in each section. Sometimes you can employ different methods and come up
with an equally fast (or possibly faster depending on which method you prefer) way of solving the problems,
so do whatever way you work the fastest and feel the most comfortable with.
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1 Numerical Tricks

1.1 Introduction: FOILing When Multiplying

Multiplication is at the heart of every number sense test. Slow multiplication hampers how far you are able
to go on the test as well as decreasing your accuracy. To help beginners learn how to speed up multiplying,
the concept of FOILing, learned in beginning algebra classes, is introduced as well as some exercises to help
in speeding up multiplication. What is nice about the basic multiplication exercises is that anyone can make
up problems, so practice is unbounded.

When multiplying two two-digit numbers ab and cd swiftly, a method of FOILing (First-Outer+Inner-Last)
is used. To understand this concept better, lets take a look at what we do when we multiply ab× cd:

ab = 10a + b and cd = 10c + d

(10a + b)× (10c + d) = 100(ac) + 10(ad + bc) + bd

A couple of things can be seen by this:

1. The one’s digit of the answer is simply bd or the First digits (by first I mean the least significant digit)
of the two numbers multiplied.

2. The ten’s digit of the answer is (ad + bc) which is the sum of the Outer digits multiplied together plus
the Inner digits multiplied.

3. The hundred’s digit is ac which are the Last digits (again, by last I mean the most significant digit)
multiplied with each other.

4. If in each step you get more than a single digit, you carry the extra (most significant digit) to the next
calculation. For example:

74× 23 =

Units: 3× 4 = 12
Tens: 3× 7 + 2× 4 + 1 = 30
Hundreds: 2× 7 + 3 = 17
Answer: 1702

Where the bold represents the answer and the italicized represents the carry.

Similarly, you can extend this concept of FOILing to multiply any n-digit number by m-digit number in a
procedure I call “moving down the line.” Let’s look at an example of a 3-digit multiplied by a 2-digit:

493× 23 =

Ones: 3× 3 = 9
Tens: 3× 9 + 2× 3 = 33
Hundreds: 3× 4 + 2× 9 + 3 = 33
Thousands: 2× 4 + 3 = 11
Answers: 11339

As one can see, you just continue multiplying the two-digit number “down the line”of the three-digit number
employing the FOILing technique at each step then writing down what you get for each digit then moving
on (always remembering to carry when necessary). The following is a set of exercises to familiarize you with
this process of multiplication:
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Problem Set 1.1:

95× 30 = 90× 78 = 51× 11 = 83× 51 =

64× 53 = 65× 81 = 92× 76 = 25× 46 =

94× 92 = 27× 64 = 34× 27 = 11× 77 =

44× 87 = 86× 63 = 54× 92 = 83× 68 =

72× 65 = 81× 96 = 57× 89 = 25× 98 =

34× 32 = 88× 76 = 22× 11 = 36× 69 =

35× 52 = 15× 88 = 62× 48 = 56× 40 =

62× 78 = 57× 67 = 28× 44 = 80× 71 =

51× 61 = 81× 15 = 64× 14 = 47× 37 =

79× 97 = 99× 87 = 49× 54 = 29× 67 =

38× 98 = 75× 47 = 77× 34 = 49× 94 =

71× 29 = 85× 66 = 13× 65 = 64× 11 =

62× 15 = 43× 65 = 74× 72 = 49× 41 =

23× 70 = 72× 75 = 53× 59 = 82× 91 =

14× 17 = 67× 27 = 85× 25 = 25× 99 =

137× 32 = 428× 74 = 996× 47 = 654× 45 =

443× 39 = 739× 50 = 247× 87 = 732× 66 =

554× 77 = 324× 11 = 111× 54 = 885× 78 =

34× 655 = 52× 532 = 33× 334 = 45× 301 =

543× 543 = 606× 212 = 657× 322 = 543× 230 =

111× 121 = 422× 943 = 342× 542 = 789× 359 =

239× 795 = 123× 543 = 683× 429 = 222× 796 =
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1.2 Multiplying: The Basics

1.2.1 Multiplying by 11 Trick

The simplest multiplication trick is the 11’s trick. It is a mundane version of “moving down the line,” where
you add consecutive digits and record the answer. Here is an example:

523× 11 =

Ones: 1× 3 = 3
Tens: 1× 2 + 1× 3 = 5
Hundreds: 1× 5 + 1× 2 = 7
Thousands: 1× 5 = 5
Answer: 5753

As one can see, the result can be obtained by subsequently adding the digits along the number you’re
multiplying. Be sure to keep track of the carries as well:

6798× 11 =

Ones: 8
Tens: 9 + 8 = 17
Hundreds: 7 + 9 + 1 = 17
Thousands: 6 + 7 + 1 = 14
Ten Thousands: 6 + 1 = 7
Answer: 74778

The trick can also be extended to 111 or 1111 (and so on). Where as in the 11’s trick you are adding
pairs of digits “down the line,” for 111 you will be adding triples:

6543× 111 =

Ones: 3
Tens: 4 + 3 = 7
Hundreds: 5 + 4 + 3 = 12
Thousands: 6 + 5 + 4 + 1 = 16
Ten Thousands: 6 + 5 + 1 = 12
Hun. Thousands: 6 + 1 = 7
Answer: 726273

Another common form of the 11’s trick is used in reverse. For example:

1353÷ 11 =
or

11× x = 1353

Ones Digit of x is equal to the Ones Digit of 1353: 3
Tens Digit of x is equal to: 5 = 3 + xtens 2
Hundreds Digit of x is equal to: 3 = 2 + xhund 1
Answer: 123

Similarly you can perform the same procedure with 111, and so on. Let’s look at an example:

46731÷ 111 =
or

111× x = 46731

Ones Digit of x is equal to the Ones Digit of 46731: 1
Tens Digit of x is equal to: 3 = 1 + xtens 2
Hundreds Digit of x is equal to: 7 = 2 + 1 + xhund 4
Answer: 421

The hardest part of the procedure is knowing when to stop. The easiest way I’ve found is to think about
how many digits the answer should have. For example, with the above expression, we are dividing a 5-digit
number by a roughly 100, leaving an answer which should be 3-digits, so after the third-digit you know you
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are done.

The following are some more practice problems to familiarize you with the process:

Problem Set 1.2.1.:

1. 11× 54 =

2. 11× 72 =

3. 11× 38 =

4. 462× 11 =

5. 11× 74 =

6. 66× 11 =

7. 1.1× 2.3 =

8. 52× 11 =

9. 246× 11 =

10. 111× 456 =

11. 198÷ 11 =

12. 357× 11 =

13. 275÷ 11 =

14. 321× 111 =

15. 1.1× .25 =

16. 111× 44 =

17. 374÷ 11 =

18. 87× 111 =

19. 286÷ 11 =

20. 111× 53 =

21. 297÷ 11 =

22. 2233÷ 11 =

23. 198× 11 =

24. 297÷ 11 =

25. 111× 41 =

26. 111× 35 =

27. 111× 345 =

28. 2003× 111 =

29. 3× 5× 7× 11 =

30. 121× 121 =

31. 33× 1111 =

32. 22× 32 =

33. 36963÷ 111 =

34. 20.07× 1.1 =

35. 11% of 22% is: % (dec.)
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36. 13× 121 =

37. 27972÷ 111 =

38. 2006× 11 =

39. 114 =

40. 33× 44 =

41. 2× 3× 11× 13 =

42. 121× 22 =

43. 44× 55 =

44. 2× 3× 5× 7× 11 =

45. 2553÷ 111 =

46. 114× 121 =

47. 44× 25× 11 =

48. 55× 33 =

49. (*) 32× 64× 16÷ 48 =

50. 2002÷ 11 =

51. 77× 88 =

52. (*) 44.4× 33.3× 22.2 =

53. 11× 11× 11× 11 =

54. 25553÷ 1111 =

55. 11× 13× 42 =

56. 1111× 123 =

57. 2× 5× 3× 7× 11 =

58. 121× 124 =

59. (*) 33× 44× 55 =

1.2.2 Multiplying by 101 Trick

In the same spirit as the multiplying by 11’s trick, multiplying by 101 involves adding gap connected digits.
Let’s look at an example:

438× 101 =

Ones: 1× 8 8
Tens: 1× 3 3
Hundreds: 1× 4 + 1× 8 12
Thousands: 1× 3 + 1 4
Tens Thousands: 1× 4 4
Answer: 44238

So you see, immediately you can write down the ones/tens digits (they are the same as what you are
multiplying 101 with). Then you sum gap digits and move down the line. Let’s look at another example:

8234× 101 =

Ones/Tens: 34 34
Hundreds: 2 + 4 6
Thousands: 8 + 3 11
Tens Thousands: 2 + 1 3
Hundred Thousands: 8 8
Answer: 831634
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Problem Set 1.2.2

1. 1234× 101 =

2. 10.1× 234 =

3. 369× 101 =

4. 34845÷ 101 =

5. 22422÷ 101 =

6. 202× 123 =

7. If 6 balls cost $6.06, then 15 balls cost: $

8. 404× 1111 =

9. (*) (48 + 53)× 151 =

10. (*) 8888× 62.5%× 5
11 =

1.2.3 Multiplying by 25 Trick

The trick to multiplying by 25 is to think of it as
100
4

. So the strategy is to take what ever you are multi-
plying with, divide it by 4 then move the decimal over to the right two places. Here are a couple of examples:

84× 25 =
84
4
× 100 = 21× 100 = 2100

166× 25 =
166
4
× 100 = 41.5× 100 = 4150

In a similar manner, you can use the same principle to divide numbers by 25 easily. The difference is
you multiply by 4 and then move the decimal over to the left two places

415
25

=
415
100
4

=
415× 4

100
=

1660
100

= 16.6

Problem Set 1.2.3

1. 240× 25 =

2. 25× 432 =

3. 2.6× 2.5 =

4. 148× 25 =

5. 25× 33 =

6. 64÷ 25 =

7. 25× 147 =

8. 418× 25 =

11



9. 616÷ 25 =

10. 2.5× 40.4 =

11. 1.1÷ 2.5 =

12. 3232× 25 =

13. (*) 97531÷ 246 =

14. Which is smaller: 6
25 or .25 :

15. 209× 25 =

16. (18 + 16)(9 + 16) =

17. (*) 334455÷ 251 =

18. 21.4 is % of 25.

19. 404÷ 25 =

20. 303× 25 =

21. (*) 97531÷ 246 =

22. Which is larger: 7
25 or .25 :

23. 2006÷ 25 =

24. 25× 307 =

25. 32 is 2 1
2% of:

26. (*) 47985÷ 246 =

27. 25× 2003 =

28. 15× 25× 11 =

29. 11× 24× 25 =

30. 11× 18× 25 =

31. (*) 248× 250× 252 =

1.2.4 Multiplying by 75 trick

In a similar fashion, you can multiply by 75 by treating it as
3
4
·100. So when you multiply by 75, first divide

the number you’re multiplying by 4 then multiply by 3 then move the decimal over two places to the right.

76× 75 =
76 · 3

4
· 100 = 19× 3× 100 = 5700

42× 75 =
42 · 3

4
· 100 = 10.5× 3× 100 = 3150

Again, you can use the same principle to divide by 75 as well, only you multiply by
4
3

then divide by

100 (or move the decimal place over two digits to the left).

81
75

=
81

3 · 100
4

=
81 · 4
3 · 100

=
27 · 4
100

= 1.08
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Problem Set 1.2.4

1. 48× 75 =

2. 64× 75 =

3. 66÷ 75 =

4. 84× 75 =

5. (*) 443322÷ 751 =

6. 28× 75 =

7. 75× 24 =

8. (*) 7532× 1468

9. 48÷ 75 =

10. (*) 566472÷ 748 =

11. 96÷ 75 =

12. 75× 11× 24 =

13. 4800÷ 75 =

14. 75× 48× 15 =

15. 8.8× 7.5× 1.1 =

1.2.5 Multiplying by Any Fraction of 100, 1000, etc...

You can take what we learned from the 25’s and 75’s trick (converting them to fractions of 100) with a

variety of potential fractions.
1
8
’s are chosen often because:

125 =
1
8
· 1000 37.5 =

3
8
· 100 6.25 =

5
8
· 10

In addition, you see
1
6
’s,

1
3
’s,

1
9
’s, and sometimes even

1
12

’s for approximation problems (because they

do not go evenly into 100, 1000, etc..., they have to be approximated usually).

223 ≈ 2
9
· 1000 8333.3 ≈ 5

6
· 10000 ≈ 1

12
· 100000 327 ≈ 1

3
· 1000

For approximations you will rarely ever see them almost exact to the correct fraction. For example you

might use
2
3
· 1000 for any value from 654− 678. Usually you can tell for the approximation problems what

fraction the test writer is really going for. Before doing the problem set, it is recommended to at least
familiarize yourself with the fractions in Section 2.1.4.

Problem Set 1.2.5
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1. 125× 320 =

2. (*) 8333× 24 =

3. 138÷ 125 =

4. (*) 57381÷ 128 =

5. (*) 245632÷ 111 =

6. (*) 16667÷ 8333× 555 =

7. 625× 320 =

8. (*) 774447÷ 111 =

9. (*) 62.5× 3248 =

10. 12.5× 480 =

11. (*) 17304÷ 118 =

12. (*) 87% of 5590 =

13. (*) 457689÷ 111 =

14. (*) 625× 648 =

15. 375× 408 =

16. (*) 359954÷ 1111 =

17. 88× 12.5× .11 =

18. (*) 719× 875 =

19. (*) 428571× 22 =

20. (*) 85714.2÷ 714.285 =

21. 488× 375 =

22. (*) 6311× 1241 =

23. (*) 884422÷ 666 =

24. (*) 106.25% of 640 =

25. (*) 6388× 3.75 =

26. 240× 875 =

27. (*) 12.75× 28300÷ 102 =

28. 375× 24.8 =

29. (*) 857142× 427 =

30. .0625× .32 =

31. (*) 16667× 369 =

32. (*) 918576÷ 432 =

33. (*) 456789÷ 123 =

34. (*) 106% of 319 =

35. (*) 571428× .875 =

36. (*) 123% of 882 =

37. (*) 95634÷ 278 =

38. (*) 273849÷ 165 =

39. (*) 5714.28× 85 =

40. (*) 9.08% of 443322 =

41. (*) 8333× 23 =

42. .125× 482 =
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43. (*) 714285× .875 =

44. (*) 87% of 789 =

45. (*) 16667× 49 =

46. (*) 123456÷ 111 =

47. (*) 875421÷ 369 =

48. (*) 71984× 1.371 =

49. (*) 63% of 7191 =

50. (*) 5714.28× 83 =

51. (*) 1428.57× 62 =

52. (*) 80520÷ 131 =

53. (*) 142.857× 428.571 =

54. (*) 12509× 635 =

55. (*) 1234× 567 =

56. (*) 789123÷ 456 =

57. 625× 65 =

58. (*) 1428.57× 73 =

59. (*) 7142.85× 34.2 =

60. (*) 333× 808× 444 =

61. (*) 571428× 34 =

62. (*) 833× 612 =

63. (*) 8333× (481 + 358) =

64. (*) 234678÷ 9111 =

65. (*) 428.571× 87.5 =

66. (*) 375.1× 83.33× 1.595 =

67. (*) 8333÷ 6666× 4444 =

68. (*) 8333× 121
2%× .12 =

69. (*) 639× 375÷ 28 =

70. (*) 6250÷ 8333× 8888 =

71. (*) 416666÷ 555× 76 =

72. (*) 375÷ 833× 555 =

73. (*) 438÷ 9 1
11%× 11.1 =

74. (*) 857142÷ 428571× 7777 =

75. (*) 546÷ 45 5
11%× 10.8 =

76. (*) 54.5454× 66.6× 58 =

77. (*) 456÷ 18.75%× 1
4 =

78. (*) 818÷ 44 4
9%× 12.5 =

79. (*) 62.5÷ 83.3× 888 =

80. (*) 797÷ 87.5%× 7
10 =

81. (*) 888× 87.5%÷ 7
11 =

82. (*) 1250÷ 1666× 4444 =

83. (*) 85858÷ 585 =

84. (*) (51597÷ 147)2 =
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1.2.6 Double and Half Trick

This trick involves multiplying by a clever version of 1. Let’s look at an example to show the technique:

15× 78 =
2
2
× 15× 78

= 15 · 2× 78
2

= 30× 39 = 1170

So the procedure is you double one of the numbers and half the other one, then multiply. This trick is
exceptionally helpful when multiplying by 15 or any two-digit number ending in 5. Another example is:

35× 42 = 70× 21 = 1470

It is also good whenever you are multiplying an even number in the teens by another number:

18× 52 = 9× 104 = 936
or

14× 37 = 7× 74 = 518

The purpose of this trick is to save time on calculations. It is a lot easier to multiply a single-digit number
than a two-digit number.

Problem Set 1.2.6

1. 1.5× 5.2 =

2. 4.8× 15 =

3. 64× 1.5 =

4. 15× 48 =

5. 14× 203 =

6. 14× 312 =

7. 24× 35 =

8. 312× 14 =

9. A rectangle has a length of 2.4 and a
width of 1.5. It’s area is:

10. 18× 112 =

11. 27× 14 =

12. 21× 15× 14 =

13. 33.75 = 1.5×

14. 345× 12 =

15. 1.2× 1.25 =

16. 24% of 44 is =

17. 14× 25 + 12.5× 28 =
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1.2.7 Multiplying Two Numbers Near 100

Let’s look at two numbers over 100 first:
Express n1 = (100 + a) and n2 = (100 + b) where a and b are how much the number’s are above 100, then:

n1 · n2 = (100 + a) · (100 + b)
= 10000 + 100(a + b) + ab

= 100(100 + a + b) + ab

= 100(n1 + b) + ab = 100(n2 + a) + ab

1. The Tens/Ones digits are just the difference the two numbers are above 100 multiplied together (ab)

2. The remainder of the answer is just n1 plus the amount n2 is above 100, or n2 plus the amount n1 is
above 100.

103× 108 =
Tens/Units: 8× 3 24
Rest of Answer: 103 + 8 or 108 + 3 111
Answer: 11124

Now let’s look at two numbers below 100:
Similarly, n1 = (100− a) and n2 = (100− b) so:

n1 · n2 = (100− a) · (100− b)
= 10000− 100(a + b) + ab

= 100(100− a− b) + ab

= 100(n1 − b) + ab = 100(n2 − a) + ab

1. Again, Tens/Ones digits are just the difference the two numbers are above 100 multiplied together (ab)

2. The remainder of the answer is just n1 minus the difference n2 is from 100, or n2 minus the difference
n1 is from 100.

97× 94 =
Tens/Ones: (100− 97)× (100− 94) = 3× 6 18
Rest of Answer: 97− 6 or 94− 3 91
Answer: 9118

Now to multiply two numbers, one above and one below is a little bit more tricky:
Let n1 = (100+a) which is the number above 100 and n2 = (100− b) which is the number below 100. Then:

n1 · n2 = (100 + a) · (100− b)
= 10000 + 100(a− b) + ab

= 100(100 + a− b)− ab

= 100(100 + a− b− 1) + (100− ab)
= 100(n1 − b− 1) + (100− ab)

To see what this means, it is best to use an example:

103× 94 =
Tens/Ones: 100− 3× 6 82
Rest of Answer: 103− 6− 1 96
Answer: 9682

So the trick is:
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1. The Tens/Ones is just the difference the two numbers are from 100 multiplied together then subtracted
from 100.

2. The rest of the answer is just the number that is larger than 100 minus the difference the smaller
number is from 100 minus an additional 1

Let’s look at another example to solidify this:

108× 93 =
Tens/Ones: 100− 8× 7 44
Rest of Answer: 108− 7− 1 100
Answer: 10044

It should be noted that you can extend this trick to not just integers around 100 but 1000, 10000, and
so forth. For the extension, you just need to keep track how many digits each part is. For example, when
we are multiplying two numbers over 100 (say 104 × 103) the first two digits would be 4 × 3 = 12, how-
ever if we were doing two numbers over 1000 (like 1002× 1007) the first three digits would be 2× 7 = 014
not 14 like what you would be used to putting. Let’s look at the example presented above and the procedure:

1002× 1007 =
Hundreds/Tens/Ones: 2× 7 014
Rest of Answer: 1002 + 7 = 1007 + 2 1009
Answer: 1009014

The best way to remember to include the “extra” digit is to think that when you multiply 1002 × 1007
you are going to expect a seven digit number. Now adding 1002 + 7 = 1009 gives you four of the digits, so
you need the first part to produce three digits for you.

Let’s look at an example of two numbers below 1000:

993× 994 =
Hundreds/Tens/Ones: 7× 6 042
Rest of Answer: 993− 6 = 994− 7 987
Answer: 987042

The following are some practice problems so that you can fully understand this trick:

Problem Set 1.2.7

1. 89× 97 =

2. 96× 97 =

3. 103× 109 =

4. 93× 97 =

5. 103× 107 =

6. 93× 89 =

7. 102× 108 =

8. 109× 107 =

9. 96× 89 =

10. 92× 97 =

11. 103× 104 =

12. 102× 103 =

13. 92× 93 =

14. 106× 107 =

18



15. 97× 89 =

16. 94× 98 =

17. 94× 91 =

18. 91× 98 =

19. 993× 994 =

20. 103× 96 =

21. 93× 103 =

22. 991× 989 =

23. 1009× 1004 =

24. 97× 107 =

25. 93× 104 =

26. 96× 103 =

27. 991× 991 =

28. 104× 97 =

29. 1003× 1008 =

30. (*) 982 + 972 =

31. 192 × 32 × 22 =

1.2.8 Squares Ending in 5 Trick

Here is the derivation for this trick. Let a5 represent any number ending in 5 (a could be any positive integer,
not just restricted to a one-digit number).

(a5)2 = (10a + 5)2

= 100a2 + 100a + 25
= 100a(a + 1) + 25

So you can tell from this that and number ending in 5 squared will have its last two digits equal to 25 and
the remainder of the digits can be found from taking the leading digit(s) and multiplying it by one greater
than itself. Here are a couple of examples:

852 =
Tens/Ones: 25
Thousand/Hundreds: 8× (8 + 1) 72
Answer: 7225

The next example shows how to compute 154 by applying the square ending in 5 trick twice, one time
to get what 152 is then the other to get that result squared.

152 =
Tens/Ones: 25
Thousands/Hundreds: 1× (1 + 1) = 2
Answer: 225

2252 =
Tens/Ones: 25
Rest of Answer: 22× (23) = 11× 46 = 506
Answer: 50625

In the above trick you also use the double/half trick and the 11’s trick. This just shows that for some
problems using multiple tricks might be necessary. Another point to make is that several other tricks use
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the squares ending in 5 trick somewhere in the computation (see Section 1.2.10). So although this problem
set for this section is rather small, this trick is crucial to applying several other tricks.

Problem Set 1.2.8

1. 25% of 25 =

2. .35× 3.5 =

3. 122 + 2× 12× 13 + 132 =

4. (115)2 =

5. f(x) = 9x2 − 12x + 4, f(19) =

6. 45% of 45− 45 =

7. (*) 124 =

8. 505× 505 =

9. A square has an area of 12.25 sq.
cm. It’s perimeter is:

1.2.9 Squares from 41-59

There is a quick trick for easy computation for squares from 41−59. Let k be a 1-digit positive integer, then
any of those squares can be expressed as (50± k):

(50± k)2 = 2500± 100 · k + k2

= 100(25± k) + k2

What this means is that:

1. The tens/ones digits is just the difference the number is from 50 squared (k2).

2. The remainder of the answer is taken by adding (if the number is greater than 50) or subtracting (if
the number is less than 50) that difference from 25.

3. Note: You could extend this concept to squares outside the range of 41 − 59 as long as you keep up
with the carry appropriately.

Let’s illustrate with a couple of examples:

462 =
Tens/Ones: (50− 46)2 = 42 16
Rest of Answer: 25− 4 21
Answer: 2116

572 =
Tens/Ones: (57− 50)2 = 72 49
Rest of Answer: 25 + 7 32
Answer: 3249

612 =
Tens/Ones: (61− 50)2 = 112 121
Rest of Answer: 25 + 11 + 1 37
Answer: 3721

Problem Set 1.2.9
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1. 582 =

2. (510)2 =

3. 47× 47 =

4. 532 =

5. (*) 48× 49× 50 =

6. 562 =

7. 59× 59 =

8. 412 =

1.2.10 Multiplying Two Numbers Equidistant from a Third Number

To illustrate this concept, let’s look at an example of this type of problem: 83× 87. Notice that both 83 and
87 are 2 away from 85. So:

83× 87 = (85− 2)× (85 + 2)

Notice this is just the difference of two squares:

(85− 2)× (85 + 2) = 852 − 22 = 7225− 4 = 7221

So the procedure is:

1. Find the middle number between the two numbers being multiplied and square it.

2. Subtract from that the difference between the middle number and one of two numbers squared.

For most of these types of problems, the center number will be a multiple of 5, making the computation
of its square relatively simple (See: Square’s Ending in 5 Trick). The following illustrates another example:

61× 69 = 652 − 42 = 4225− 16 = 4209

Problem Set 1.2.10

1. 84× 86 =

2. 53× 57 =

3. 48× 52 =

4. 62× 58 =

5. 6.8× 7.2 =

6. 88× 82 =

7. 36× 24 =

8. 7.6× 8.4 =

9. 5.3× 4.7 =

10. 51× 59 + 16 =
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11. 96× 104 =

12. 81× 89 + 16 =

13. 34× 36 + 1 =

14. 73× 77 + 4 =

15. 62× 68 + 9 =

16. 32× 38 + 9 =

17. 18× 24 + 9 =

18. 61× 69 + 16 =

19. 43× 47 + 4 =

20. 88× 82 + 9 =

21. 57× 53 + 4 =

22. 38× 28 =

23. 41× 49− 9 =

24. 77× 73 + 4 =

25. 65× 75− 33 =

26. 33× 27 + 9 =

27. 71× 79 + 16 =

28. 72× 78 + 9 =

29. 53× 57 + 4 =

30. 105× 95 =

31. 62× 68− 16 =

32. 36× 26 =

33. 83× 87− 21 =

34. 23× 27 + 4 =

35. 29× 37 =

36. 21− 83× 87 =

37. 112× 88 =

38. (*) 52× 48 + 49× 51 =

39. (*) 4.93 × 3.33 =

40. (*) 72× 68 + 71× 69 =

41. (*) 42× 38 + 41× 39 =

42. (*) 4.83 × 6.33 =

43. (*) 4000 + 322× 318 =

44. 118× 122 + 4 =

45. (*) 5.13 × 7.93 =

46. (*) 34× 36× 34× 36 =
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1.2.11 Multiplying Reverses

The following trick involves multiplying two two-digit numbers whose digits are reverse of each other.

ab× ba = (10a + b)× (10b + a)
= 100(a · b) + 10(a2 + b2) + a · b

Here is what we know from the above result:

1. The Ones digit of the answer is just the two digits multiplied together.

2. The Tens digit of the answer is the sum of the squares of the digits.

3. The Hundreds digit of the answer is the two digits multiplied together.

Let’s look at an example:

53× 35 =

Ones: 3× 5 15
Tens: 32 + 52 + 1 35
Hundreds: 3× 5 + 3 18
Answer: 1855

Here are some more problems to practice this trick:

Problem Set 1.2.11

1. 43× 34 =

2. 23× 32 =

3. 31× 13 =

4. 21× 12 =

5. 27× 72 =

6. 61× 16 =

7. 15× 51 =

8. 14× 41 =

9. 18× 81 =

10. 36× 63 =

11. 42× 24 =

12. 26× 62 =

1.3 Standard Multiplication Tricks

1.3.1 Extending Foiling

You can extend the method of FOILing to quickly multiply two three-digit numbers in the form cba× dba.
The general objective is you treat the digits of ba as one number, so after foiling you would get:

cba× dba =
Ones/Tens: (ba)2

Hundreds/Thousands: (c + d)× (ba)
Rest of Answer: c× d
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Let’s look at a problem to practice this extension:

412× 612 =

Ones/Tens: (12)2 144
Hundreds/Thousands: (4 + 6)× (12) + 1 121
Rest of Answer: 4× 6 + 1 25
Answer: 252144

By treating the last two digits as a single entity, you reduce the three-digit multiplication to essentially
a two-digit multiplication problem. The last two digits need not be the same in the two numbers (usually I
do see this as the case though) in order to apply this method, let’s look at an example of this:

211× 808 =

Ones/Tens: 08× 11 88
Hundreds/Thousands: 08× 2 + 11× 8 104
Rest of Answer: 2× 8 + 1 17
Answer: 170488

The method works the best when the last two digits don’t exceed 20 (after that the multiplication be-
come cumbersome). Another good area where this approach is great for is squaring three-digit numbers:

6062 = 606× 606

Ones/Tens: 06× 06 36
Hundreds/Thousands: 06× 6 + 6× 06 = 2× 6× 6 72
Rest of Answer: 6× 6 36
Answer: 367236

In order to use this procedure for squaring, it would be beneficial to have squares of two-digit numbers
memorized. Take for example this problem:

4312 = 431× 431

Ones/Tens: 31× 31 961
Hundreds/Thousands: 31× 4 + 4× 31 + 9 = 2× 4× 31 + 9 257
Rest of Answer: 4× 4 + 2 18
Answer: 185761

If you didn’t have 312 memorized, you would have to calculate it in order to do the first step in the process
(very time consuming). However, if you have it memorized you would not have to do the extra steps, thus
saving time.

Here are some practice problems to help with understanding FOILing three-digit numbers.

Problem Set 1.3.1

1. 2022 =

2. 406× 406 =

3. 503× 503 =

4. 6072 =

5. 2082 =

6. 3062 =

7. 509× 509 =

8. 8042 =

9. 704× 704 =
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10. 4082 =

11. 602× 602 =

12. 3032 =

13. 9092 =

14. 4022 =

15. 7072 =

16. 301× 113 =

17. 803× 803 =

18. 4042 =

19. 5122 =

20. 122× 311 =

21. 6122 =

22. 321× 302 =

23. 7142 =

24. 234× 211 =

25. 112× 211 =

26. 214× 314 =

27. 203× 123 =

28. 121× 411 =

29. 412× 112 =

30. 505× 404 =

31. 311× 113 =

32. 124× 121 =

33. 9182 =

34. 124× 312 =

35. 311× 122 =

36. 5242 =

37. 133× 311 =

38. 141× 141 =

39. 511× 212 =

40. 122× 212 =

41. (12012)(12012) =

42. 6672 =

1.3.2 Factoring of Numerical Problems

In many of the intermediate problems, there are several questions where factoring can make the problem
a lot easier. Outlined in the next couple of tricks are times when factoring would be beneficial towards
calculation. We’ll start off with some standard problems:
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212 + 632 = 212 + (3 · 21)2

= 212 · (1 + 9)
= 4410

This is a standard trick of factoring that is common in the middle section of the test. Another factoring
procedure is as followed:

48× 11 + 44× 12 = 11 · (48 + 4× 12)
= 11 · (96)
= 1056

Factoring problems can be easily identified because, at first glance, they look like they require dense compu-
tation. For example, the above problem would require two, two-digit multiplication and then their addition.
Whereas when you factor out the 11 you are left with a simple addition and a multiplication using the 11’s
trick.

Another thing is that factoring usually requires the knowledge of another trick. For instance, the first
problem required the knowledge of a square (212) while the second example involved applying the 11’s trick.

The following are examples when factoring would lessen the amount of computations:

Problem Set 1.3.2

1. 82 + 242 =

2. 272 + 92 =

3. 15× 12 + 9× 30 =

4. 28× 6− 12× 14 =

5. 332 + 112 =

6. 48× 22− 22× 78 =

7. 3.92 + 1.32 =

8. 2004 + 2004× 4 =

9. 32× 16 + 16× 48 =

10. 192 + 19 =

11. 2005× 5 + 2005 =

12. 27× 33− 11× 81 =

13. 21× 38− 17× 21 =

14. 40× 12 + 20× 24 =

15. 512 + 51× 49 =

16. 30× 11 + 22× 15 =

17. 212 + 72 =

18. 2006− 2006× 6 =

19. 12× 16 + 8× 24 =

20. 1.22 + 3.62 =

21. 14× 44− 14× 30 =
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22. 60× 32− 32× 28 =

23. 45× 22− 44× 15 =

24. (20× 44)− (18× 22) =

25. 492 + 49 =

26. 292 + 29 =

27. 16× 66− 16× 50 =

28. 592 + 59 =

29. 14× 38− 14× 52 =

30. 41× 17− 17× 24 =

31. 17× 34− 51× 17 =

32. 15× 36 + 12× 45 =

33. 692 + 69 =

34. 13× 77 + 91× 11 =

35. 113 − 112 =

36. 12× 90 + 72× 15 =

37. 792 + 79 =

38. 54× 11 + 99× 6 =

39. 10 · 11 + 11 · 11 + 12 · 11 =

40. 1192 + 119 =

41. 392 + 39 =

42. 18× 36− 18× 54 =

43. 22× 75 + 110× 15 =

44. 99× 99 + 99 =

45. 45× 16− 24× 30 =

46. 112 − 113 =

47. 25× 77 + 25× 34 =

48. 15× 18 + 9× 30 =

49. 24× 13 + 24× 11 =

50. 129× 129 + 129 =

51. 13× 15 + 11× 65 =

52. (*) 33× 31 + 31× 29 =

53. 31× 44 + 44× 44 =

54. 122 + 242 =

55. (*) 73× 86 + 77× 84 =

56. (*) 63× 119 + 121× 17 =

57. 48× 11 + 44× 12 =

58. 1092 + 109 =

59. (*) 38× 107 + 47× 93 =

60. 64× 21− 42× 16 =

61. (*) 23× 34 + 43× 32 =

62. 72× 11 + 99× 8 =

63. (*) 43× 56 + 47× 54 =
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64. 15× 75 + 45× 25 =

65. 42× 48 + 63× 42 =

66. 142 − 282 =

67. (*) 31× 117 + 30× 213 =

68. 48× 28 + 27× 28 =

69. 34× 56 + 55× 34 =

70. (*) 34× 45 + 54× 43 =

1.3.3 Sum of Consecutive Squares

Usually when approached with this problem, one of the squares ends in 5 making the squaring of the number
relatively trivial. You want to use the approach of factoring to help aid in these problems. For example:

352 + 362 = 352 + (35 + 1)2 = 2 · 352 + 2 · 35 + 12 = 2 · 1225 + 70 + 1 = 2521

This is a brute force technique, however, it is a lot better than squaring both of the numbers then adding
them together (which you can get lost very easily doing that).

Here are some more practice problems to familiarize yourself with this procedure.

Problem Set 1.3.3

1. 352 + 362 =

2. 122 + 132 =

3. 152 + 162 =

4. 252 + 262 =

5. 402 + 412 =

6. 802 + 812 =

1.3.4 Sum of Squares: Factoring Method

Usually on the 3rd of 4th column of the test you will have to compute something like: (302 − 22) + (30 + 2)2

(where the subtracting and additions might be reversed). Instead of memorizing a whole bunch of formulas
for each individual case, it is probably just best to view these as factoring problems and using the techniques
of FOILing to aid you. So for our example:

(302 − 22) + (30 + 2)2 = 2 · 302 + 2 · 30 · 2 + 22 − 22 = 1800 + 120 = 1920

Usually the number needing to be squared is relatively simple (either ending in 0 or ending in 5), making
the computations a lot easier. Other times, another required step of converting a number to something more
manageable will be necessary. For example:

192 + (102 − 92) = (10 + 9)2 + (102 − 92) = 2 · 102 + 2 · 10 · 9 + 92 − 92 = 200 + 180 = 380
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The following are some more problems to give you practice with this technique:

Problem Set 1.3.4

1. (11 + 10)2 + (112 − 102) =

2. (30 + 2)2 + (302 − 22) =

3. (10 + 9)2 + (102 − 92) =

4. (30 + 2)2 − (302 − 22) =

5. 242 − (202 + 42) =

6. 312 − (292 − 22) =

7. (302 − 22) + (30 + 2)2 =

8. 812 + (80 + 1)(80− 1) =

9. 552 − (502 − 52) =

10. 472 + 402 − 72 =

11. (55 + 3)2 + 552 − 32 =

12. 302 − (282 − 22) =

13. 382 + (30 + 8)(30− 8) =

14. 422 + (402 − 22) =

15. 322 − (302 − 22) =

16. (28 + 2)2 + (282 − 22) =

17. 222 + 202 − 22 =

18. 452 − (402 − 52) =

19. 552 − 502 + 52 =

20. (30 + 2)2 − (302 − 22) =

21. 53× 53 + 50× 50− 3× 3 =

22. 462 − (212 − 252) =

1.3.5 Sum of Squares: Special Case

There is a special case of the sum of squares that have repeatedly been tested. In order to apply the trick,
these conditions must be met:

1. Arrange the two numbers so that the unit’s digit of the first number is one greater than the ten’s digit
of the second number.

2. Make sure the sum of the ten’s digit of the first number and the one’s digit of the second number add
up to ten.

3. If the above conditions are met, the answer is the sum of the squares of the digits of the first number
times 101.

Let’s look at an example: 722 + 132.

1. The unit’s digit of the first number (2) is one greater than the ten’s digit of the second number (1).

2. The sum of the ten’s digit of the first number (7) and the unit’s digit of the second number (3) is 10.
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3. The answer will be (72 + 22)× 101 = 5353.

It is important to arrange the numbers accordingly for this particular trick to work. For example, if you see
a problem like: 342 + 642, it looks like a difficult problem where this particular trick won’t apply. However,
if you switch the order of the two numbers you get 342 + 642 = 642 + 342 = (62 + 42)× 101 = 5252.

Generally this trick is on the third column, and it is relatively simple to notice when to apply it because if
you were having to square the two numbers and add them together it would take a long time. That should
tip you off immediately that there is trick that you should apply!

The following are some practice problems with this trick:

Problem Set 1.3.5

1. 932 + 212 =

2. 122 + 192 =

3. 722 + 132 =

4. 822 + 122 =

5. 452 + 462 =

6. 362 + 572 =

7. 552 + 562 =

8. 372 + 672 =

1.3.6 Difference of Squares

Everybody should know that x2 − y2 = (x− y)(x + y), and you can apply this trick when asked to find the
difference between squares of numbers. For example:

542 − 552 = (54− 55)(54 + 55) = −109

This is a pretty basic trick and is easily recognizable on the test.

The following are some more practice to give you a better feel of the problems:

Problems Set 1.3.6

1. 732 − 722 =

2. 362 − 342 =

3. 572 − 582 =

4. 672 − 662 =

5. 692 − 672 =

6. 542 − 552 =

7. 672 − 652 =

8. 882 − 872 =

9. 482 − 492 =

10. 972 − 962 =
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11. 772 − 762 =

12. 542 − 532 =

13. 422 − 442 =

14. 4.72 − 3.32 =

15. 1.32 − 2.62 =

16. 652 − 642 + 632 − 622 =

17. 242 − 62 =

18. 562 − 552 + 542 − 532 =

19. 762 − 742 =

20. 3.52 − 6.52 =

21. 222 − 232 + 242 − 252 =

22. 552 − 502 =

23. 832 − 822 + 812 − 802 =

24. 552 − 522 =

25. 442 − 432 + 422 − 412 =

26. 1112 − 1102 + 1092 − 1082 =

27. 112 − 222 =

28. 772 − 762 + 752 − 742 =

29. 632 − 572 =

30. 562 − 552 + 542 − 532 =

31. 592 − 712 =

32. 162 − 172 + 182 − 192 =

33. 412 − 422 + 432 − 442 =

34. 182 − 62 =

35. x2 + 162 = 192, then x2 =

36. 4.52 − 1.52 =

37. 212 − 202 + 192 − 182 =

38. 582 − 592 + 602 − 612 =

39. 722 − 782 =

40. 242 − 222 + 202 − 182 =

41. 892 − 862 + 832 − 802 =

42. 482 − 622 =

43. 742 − 762 + 782 − 802 =

44. 382 − 272 =

45. 312 − 332 + 352 − 372 =

46. 482 − 442 + 402 − 362 =

47. 792 − 762 + 732 − 702 =
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1.3.7 Multiplying Two Numbers Ending in 5

This is helpful trick for multiplying two numbers ending in 5. Let’s look at its derivation, let n1 = a5 =
10a + 5 and n2 = b5 = 10b + 5 then:

n1 × n2 = (10a + 5) · (10b + 5)
= 100(ab) + 50(a + b) + 25

= 100(ab +
a + b

2
) + 25

So what does this mean:

1. If a + b is even then the last two digits are 25.

2. If a + b is odd then the last two digits are 75.

3. The remainder of the answer is just ab + ba + b

2
c, where bxc is the greatest integer less than or equal

to x.

Let’s look at an example in each case:

45× 85 =

Ones/Tens: Since 4 + 8 is even 25

Rest of Answer: 4× 8 +
4 + 8

2
= 32 + 6 38

Answer: 3825

35× 85 =

Ones/Tens: Since 3 + 8 is odd 75

Rest of Answer: 3× 8 + b3 + 8
2

c = 24 + 5 29

Answer: 2975

Problem Set 1.3.7

1. 35× 45 =

2. 95× 45 =

3. 35× 65 =

4. 85× 55 =

5. 65× 45 =

6. 35× 85 =

7. 65× 95 =

8. 55× 95 =

1.3.8 Multiplying Mixed Numbers

There are two major tricks involving the multiplication of mixed numbers. The first of which isn’t a trick
at all, only employing the technique of FOILing. Let’s illustrate with an example:

8
1
8
× 24

1
8

= (8 +
1
8
)× (24 +

1
8
)

= 8 · 24 + (8 + 24) · 1
8

+
1
8
· 1
8

= 196
1
64
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For the most part both of the whole numbers in the mixed numbers are usually divisible by the fraction
you are multiplying by (in our example both 8 and 24 are divisible by 8), which means you can just write
down the fractional part of the answer immediately and then continue with the problem.

The other trick for mixed numbers occur when the sum of the fractional part is 1 and the two whole
numbers are the same. For example:

9
1
3
× 9

2
3

= (9 +
1
3
)× (9 +

1
3
)

= 92 + (9 · 2 + 9) · 1
3

+
1
3
· 2
3

= 92 + 9 +
2
9

= 9(9 + 1) +
2
9

= 90
2
9

So the trick is:

1. The fractional part of the answer is just the two fractions multiplied together.

2. If the whole part in the problem is n then the whole part of the answer is just n · (n + 1)

Here is another example problem to show the procedure:

7
2
5
× 7

3
5

=

Fractional Part:
2
5
· 3
5

6
25

Whole Part: 7 · (7 + 1) 56

Answer: 56
6
25

Although these tricks are great (especially foiling the mixed numbers) sometimes FOILing is very com-
plicated, so the best method is to convert the mixed numbers to improper fractions and see what cancels.
For example, you don’t want to FOIL these mixed numbers:

4
7
12
× 2

2
5

=
7
12
· 2
5

+ 4 · 2
5

+ 2 · 7
12

+ 4 · 2

The above is really difficult to compute. Instead convert the numbers to improper fractions:

4
7
12
× 2

2
5

=
55
12
× 12

5
= 11

Usually the best method is to see if you can FOIL the numbers relatively quickly, and if you notice a stum-
bling block try to convert to improper fractions, then multiply.

Here are more practice problems to help you with these tricks:

Problem Set 1.3.8
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1. 4
1
4
× 8

1
4

=

2. 8
2
3
× 8

1
3

=

3. 3
4
5
× 3

1
5

=

4. 4
2
3
× 6

1
4

=

5. 12
1
4
× 8

1
4

=

6. 15
1
6
× 9

1
6

=

7. 6
1
6
× 12

1
6

=

8. 11
1
11
× 22

1
11

=

9. 25
2
5
× 5

2
5

=

10. 5.2× 10.2 =

11. 8
2
3
× 4

2
3

=

12. 7
1
7
× 14

1
7

=

13. 5
1
5
× 10

1
5

=

14. 5
1
5
× 25

1
5

=

15.
(

5
2
5

)2

=

16. 8
1
8
× 16

1
8

=

17. 10
5
6
× 12

4
5

=

18. 3
1
2
× 5

6
7

=

19. 11× 11
10
11

=

20. 6
2
3
× 9

2
3

=

21.
(

12
2
3

)2

=

22. 7
1
7
× 49

1
7

=

23. 3
3
4
× 2

2
5

=

24. 4.3× 2.1 =

25. 6× 6
5
6

=

26.
(

6
2
3

)2

=

27. 15.2× 5.2 =

28. 4
3
5
× 4

2
3

=

29. 3.125× 1.6 =

30. 2.375× 2.4 =

31. 2
2
5
× 5

2
5

=

1.3.9 a× a

b
Trick

The following is when you are multiplying an integer times a fraction in the form a× a

b
: The derivation of

the trick is not of importance, only the result is:

a× a

b
= [a + (a− b)] +

(a− b)2

b
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Let’s look at a couple of examples:

11× 11
13

= 11 + (11− 13) +
(11− 13)2

13

= 11− 2 +
4
13

= 9
4
13

It also works for multiplying by fractions larger than 1:

13× 13
12

= 13 + (13− 12) +
(13− 12)2

12

= 13 + 1 +
1
12

= 14
1
12

As you can see, when you are multiplying by a fraction less than 1 you will be subtracting the difference
between the numerator and denominator, while when you are multiplying by a fraction greater than 1 you
will be adding the difference.

It should be noted that there are exceptions (usually on the fourth column) where applying this trick is
relatively difficult, and it is much easier to just convert to improper fractions then subtract. An example of
this (which was one of the last problems asked on a test) is:

7× 7
15
− 7 = (7− 8) +

82

15
− 7 = −8 +

64
15

= −8 + 4 +
4
15

= −3
11
15

The above expression was relatively difficult to compute, however if we converted to improper fractions:

7× 7
15
− 7 =

7 · 7
15

− 7 · 15
15

=
7 · (7− 15)

15
=
−56
15

= −3
11
15

This method is a lot less cumbersome and gets the answer relatively swiftly. However, it should be noted
that the majority of times the trick is applicable and should definitely be used.

The following are more problems to illustrate this trick:

Problem Set 1.3.9

1. 11× 11
14

=

2. 22× 22
25

=

3. 19× 19
23

=

4. 27× 27
32

=

5. 16× 16
19

=

6. 29× 29
34

=

7. 31× 31
34

=

8. 14× 14
17
− 3 =

9. 11× 11
14

+ 3 =

10. 13× 13
16

+ 13 =
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11. 13× 13
17

+ 4 =

12. 13× 13
14
− 13 =

13. 17× 17
18
− 17 =

14. 22× 22
25

− 22 =

15. 14× 14
17
− 14 =

16. 17× 1
17
21

=

17. 13× 13
16
− 13 =

18. 11× 11
12
− 11 =

19. 7× 7
15

− 7 =

20. 14× 14
17
− 14 =

21. 15× 15
17
− 15 =

22. 35× 1
35
38

=

23. 13× 13
15
− 13 =

1.3.10 Combination of Tricks

The following is a practice set of combinations of some of the multiplication tricks already mentioned in the
book. Most are approximations which occur on the third or fourth columns of the test.

Problem Set 1.3.10

1. (*) 12× 14× 16 =

2. (*) 21× 31× 41 =

3. (*) 13× 15× 17 =

4. (*) 14× 16× 28 =

5. (*) 146× 5× 154 =

6. (*) 24× 34× 44 =

7. (*) 24× 36× 48 =

8. (*) 44× 25× 112 =

9. (*) 22× 25× 28 =

10. (*) 83× 87× 91 =

11. (*) 43× 47× 51 =

12. (*) 27× 29× 31× 33 =

13. (*) 23× 33× 43 =

14. (*) 29× 127 + 31× 213 =

15. (*) 41× 44× 47 =

16. (*) 31× 42× 53 =

17. (*) 22× 44× 66 =

18. (*) 39× 40× 41 =
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19. (*) 3
√

1329×√171× 15 =

20. (*) 42× 48× 45 =

21. (*) 52× 55× 58 =

22. (*) 18× 20× 22 =

23. (*) 24× 34× 44 =

24. (*) 80× 82× 84 =

25. (*) 28× 30× 32 =

26. (*) 66× 68× 70 =

27. (*) 63× 65× 67 =

28. (*) 41× 43÷ 51× 53 =

29. (*) 67× 56 + 65× 76 =

30. (*) 56× 45 + 54× 65 =

31. (*) 112× 123 + 132× 121 =

32. (*) 29× 11 + 31× 109 =

33. (*) 752 ÷ 252 × 504 =

34. (*) 183 × 153 ÷ 93 =

35. (*) 505 ÷ 255 × 55 =

36. (*) 243 × 213 ÷ 44 =

37. (*) 213 × 182 ÷ 93 =

38. (*) 754 ÷ 503 × 252 =

39. 242 × 183 ÷ 64 =

40. (*) 3
√

3380×√223× 16 =

1.4 Dividing Tricks

Most of these tricks concern themselves with finding the remainders when dividing by certain numbers.

1.4.1 Finding a Remainder when Dividing by 4,8, etc...

Everybody knows that to see if a number is divisible by 2 you just have to look at the last digit, and if that
is divisible by 2 (i.e. any even number) then the entire number is divisible by 2. Similarly, you can extend
this principle to see if any integer is divisible by 4, 8, 16,etc... For divisibility by 4 you look at the last two
digits in the number, and if that is divisible by 4, then the entire number is divisible by 4. With 8 it is the
last three digits, and so on. Let’s look at some examples:

123456÷ 4 has what remainder? 987654÷ 8 has what remainder?

Look at last two digits: 56÷ 4 = r0 Look at last three digits: 654÷ 8 = r6

Here are some practice problems to get you familiar with this procedure:

Problem Set 1.4.1
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1. 364÷ 4 has what remainder:

2. 1324354÷ 4 has what remainder:

3. 246531÷ 8 has what remainder:

4. 81736259÷ 4 has what remainder:

5. 124680÷ 8 has what remainder:

6. 214365÷ 8 has what remainder:

7. Find k so that the five digit number 5318k
is divisible by 8:

1.4.2 Finding a Remainder when Dividing by 3,9, etc...

In order to find divisibility with 3, you can sum up all the digits and see if that result is divisible by 3.
Similarly, you can do the same thing with 9. Let’s look at two examples:

34952÷ 3 has what remainder? 112321÷ 9 has what remainder?

Sum of the Digits: (3 + 4 + 9 + 5 + 2) = 23 Sum of the Digits: (1 + 1 + 2 + 3 + 2 + 1) = 10

23÷ 3 = r2 10÷ 9 = r1

For some examples, you can employ faster methods by using modular techniques in order to get the re-
sults quicker (see Modular Arithmetic Section). For example, if we were trying to see the remainder of
366699995 when dividing by 3, rather than summing up all the digits (which would be a hassle) and then
seeing the remainder when that is divided by 3, you can look at each digit and figure out what it’s remainder
is when dividing by 3 then summing those. So for our example:

366699995 ∼= (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2) ∼= 2(mod 3) therefore it leaves a remainder of 2.

Here is a set of practice problems:

Problem Set 1.4.2

1. 24680÷ 9 has a remainder of:

2. 6253178÷ 9 has a remainder of:

3. 2007÷ 9 has a remainder of:

4. 13579÷ 9 has a remainder of:

5. 2468÷ 9 has a remainder of:

6. Find the largest integer k such that
3k7 is divisible by 3:

1.4.3 Finding a Remainder when Dividing by 11

Finding the remainder when dividing by 11 is very similar to finding the remainder when dividing by 9
with one catch, you add up alternating digits (beginning with the ones digits) then subtract the sum of the
remaining digits. Let’s look at an example to illustrate the trick:
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13542÷ 11 has what remainder?

Sum of the Alternating Digits: (2 + 5 + 1) = 8

Sum of the Remaining Digits: (4 + 3) = 7

Remainder: 8− 7 = 1

Sometimes adding then subtracting “down the digits” will be easier than finding two explicit sums then
subtracting. For example, if we were finding the remainder of 3456789÷11, instead of doing (9+7+5+3)−
(8 + 6 + 4) = 24− 18 = 6 it might be easier to do 9− 8 + 7− 6 + 5− 4 + 3 = 1 + 1 + 1 + 3 = 6. That is what
is so great about number sense tricks; there are always methods and approaches to making them faster!

Problem Set 1.4.3

1. 7653÷ 11 has a remainder of:

2. 745321÷ 11 has a remainder of:

3. 142536÷ 11 has a remainder of:

4. 6253718÷ 11 has a remainder of:

5. 87125643÷ 11 has a remainder of:

6. 325476÷ 11 has a remainder of:

7. Find k so that 23578k
is divisible by 11:

8. Find k so that 1482065k5
is divisible by 11:

9. Find k so that 456k89
is divisible by 11:

10. Find k so that 377337k
is divisible by 11:

1.4.4 Finding Remainders of Other Integers

A very popular question on recent number sense tests include finding the remainder when dividing by 6 or
12 or some combination using the tricks mentioned above. When dividing seems trivial, sometimes it is best
to just long divide to get the remainder (for example 1225÷ 6 = r1 from obvious division), however, when
this seems tedious, you can use a combination of the two of the tricks mentioned above (depending on the
factors of the number you are dividing). Let’s look at an example:

556677÷ 6 has what remainder?

Dividing by 2: r1

Dividing by 3: (5 + 5 + 6 + 6 + 7 + 7) = 36÷ 3 r0

So now the task is to find an appropriate remainder (less than 6) such that it is odd (has a remainder
of 1 when dividing by 2) and is divisible by 3 (has a remainder of 0 when dividing by 3). From this infor-
mation, you get r = 3. Let’s look at another example to solidify this procedure:
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54259÷ 12 has what remainder?

Dividing by 4: 59÷ 4 r3

Dividing by 3: (5 + 4 + 2 + 5 + 9) = 25÷ 3 r1

So for this instance, we want an appropriate remainder (less than 12) that has a remainder of 3 when
dividing by 4, and a remainder of 1 when dividing by 3. Running through the integers of interest (0− 11),
you get the answer r = 7.

The best way of getting faster with this trick is through practice and familiarization of the basic princi-
ples. The following are some more practice questions:

Problem Set 1.4.4

1. 2002÷ 6 has a remainder of:

2. 2006÷ 6 has a remainder of:

3. 112358÷ 6 has a remainder of:

4. If 852k is divisible by 6 then the
largest value for k is:

5. 13579248÷ 6 has a remainder of:

6. 322766211÷ 6 has a remainder of:

7. 563412÷ 6 has a remainder of:

8. Find k so that the 4-digit number 567k
is divisible by 6:

9. If 86k6 is divisible by 6 then the
largest value for k is:

10. 423156÷ 12 has a remainder of:

11. If 555k is divisible by 6 then the
largest value for k is:

12. Find k> 4 so that the 6-digit
number 3576k2 is divisible by 12:

13. 735246÷ 18 has a remainder of:

14. 6253718÷ 12 has a remainder of:

15. Find k so that the 5-digit number 8475k
is divisible by 6:

1.4.5 Remainders of Expressions

Questions like (43 − 15× 43)÷ 6 has what remainder, are very popular and appear anywhere from the 2nd

to the 4th column. This problem has its root in modular arithmetic (See: Modular Arithmetic Section), and
the procedure for solving it is simply knowing that “the remainders after algebra is equal to the algebra of
the remainders.” So instead of actually finding what 43 − 15 × 43 is and then dividing by 6, we can figure
out what the remainder of each term is when dividing by 6, then do the algebra. So:

(43 − 15× 43)÷ 6 ∼= (4− 3× 1)÷ 6 = r1
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It should be noted that if a negative value is computed as the remainder, addition of multiples of the
number which you are dividing by are required. Let’s look at an example:

(15× 43− 34× 12)÷ 7 ∼= (1× 1− 6× 5)÷ 7 = −29 ⇒ −29 + 5 · (7) = r6

So in the above question, after computing the algebra of remainders, we get an unreasonable remainder of
−29. So to make this a reasonable remainder (a positive integer such that 0 ≤ r < 7), we added a multiple
of 7 (in this case 35) to get the correct answer.

You can use this concept of “negative remainders” to your benefit as well. For example, if we were trying
to see the remainder of 138 ÷ 14, the long way of doing it would be noticing that 132 = 169 ÷ 14 = r1 ⇒
14 ÷ 14 = r1 or you could use this concept of negative remainders (or an example of congruencies if you are
familiar with that term) to say that 138 ÷ 14 ⇒ (−1)8 ÷ 14 = r1.

The following are some practice problems to solidify using the “algebra of remainders” method:

Problem Set 1.4.5

1. (31× 6− 17)÷ 8 has a remainder of:

2. (34× 27 + 13)÷ 4 has a remainder of:

3. (44× 34− 24)÷ 4 has a remainder of:

4. (33 + 23× 13)÷ 3 has a remainder of:

5. (23 + 33× 43)÷ 4 has a remainder of:

6. (24× 34− 44)÷ 7 has a remainder of:

7. (112 + 9× 7)÷ 5 has a remainder of:

8. (15× 3− 62)÷ 9 has a remainder of:

9. (12× 9− 23)÷ 8 has a remainder of:

10. (65× 4− 32)÷ 10 has a remainder of:

11. (34× 56− 12)÷ 9 has a remainder of:

12. (65− 4× 3)÷ 6 has a remainder of:

13. (2× 34 + 56)÷ 7 has a remainder of:

14. (23− 4× 5 + 6)÷ 7 has a remainder of:

15. (34× 5− 6)÷ 7 has a remainder of:

16. (1 + 2− 3× 45)÷ 6 has a remainder of:

17. (82 + 4× 6− 10)÷ 3 has a remainder of:

18. (12× 5 + 18 + 15)÷ 8 has a remainder of:

19. (73 + 82 − 91)÷ 6 has a remainder of:

20. (20 + 4× 62)÷ 8 has a remainder of:

21. (72× 64− 83)÷ 7 has a remainder of:

22. (15× 30− 45)÷ 7 has a remainder of:

23. (64 × 53 − 42)÷ 3 has a remainder of:

24. (24 × 36 − 510)÷ 4 has a remainder of:

25. (92 − 7× 5)÷ 4 has a remainder of:

26. (82 × 6− 4)÷ 3 has a remainder of:

27. (12× 34− 56)÷ 7 has a remainder of:
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1.4.6 Dividing by 9 Trick

From a previous section it is explained how a remainder can be found when dividing by 9. However, you can
continue this process of adding select digits to get the complete answer when dividing by 9. The following is
the result when you divide a four digit number abcd by 9 without carries. The details of the proof is omitted,
only the result is shown:

abcd÷ 9 =

Fractional Part:
a + b + c + d

9

Ones: a + b + c

Tens: a + b

Hundreds: a

I think the gist of the trick is self explanatory, let’s look at a simple example:

3211÷ 9 =

Fractional Part:
3 + 2 + 1 + 1

9
7
9

Ones: 3 + 2 + 1 6

Tens: 3 + 2 5

Hundreds: 3 3

Answer: 356
7
9

Here is a little bit more complicated of a problem involving a larger number being divided as well as
incorporating carries:

32257÷ 9 =

Fractional Part:
3 + 2 + 2 + 5 + 7

9
2

1
9

Ones: 3 + 2 + 2 + 5 + 2 14

Tens: 3 + 2 + 2 + 1 8

Hundreds: 3 + 2 5

Thousands: 3 3

Answer: 3584
1
9

Here are some problems to give you more practice with this trick:

Problem Set 1.4.6
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1. 354÷ 9 =

2. 503÷ 9 =

3. 2003÷ 9 =

4. 321÷ 9 =

5. 456÷ 9 =

6. 1234÷ 9 =

7. 12345÷ 9 =

8. 2475÷ 45 =

1.4.7 Converting a
40 and b

80 , etc... to Decimals

The following isn’t necessarily a trick but more of a procedure I like to follow when I am approached with

converting
a

40
and

b

80
into decimals (usually on the first column of problems). So for

a

40
I treat it as:

a

40
=

a

40
×

1
4
1
4

=
a
4

10

So the technique is to divide the numerator by 4 then shift the decimal point over. Similarly, for
b

80
you

want to divide by 8 and shift the decimal point over. Let’s look at a couple of examples:

43
40

= 1 +
3
40

= 1 +
.75
10

= 1.075

27
80
⇒ 27

8
= 3.375 ⇒ 3.375

10
= .3375

Here are some practice problems of this type:

Problem Set 1.4.7

1.
1
40

= %

2.
3
40

= %

3.
7
40

= %

4.
21
40

= %

5.
43
40

= (dec.)

6.
3

(23)(51)
= (dec.)

7. .0125 = % (frac.)

8. 48 is % greater than 40.

9.
7
40

= %

10. 32 is what % of 80.

11.
11
40

= %

12.
32

(23)(52)
= (dec.)
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13. 72 is what % of 400.

14.
5

(23)(52)
= (dec.)

15. 4
7
20

= %

16.
5
80

= %

17. 27.5% = (frac.)

18.
43

(23)(52)
= (dec.)

19. 1.6 is % of 20.

20.
34

(24)(54)
= (dec.)

1.5 Adding and Subtracting

The following are tricks where adding/subtracting are required to solve the problems.

1.5.1 Subtracting Reverses

A common first column problem involves subtracting two numbers whose digits are reverses of each other
(like 715− 517 or 6002− 2006). Let the first number n1 = abc = 100a + 10b + c so the second number with
the digits reversed would be n2 = cba = 100c + 10b + a so:

n1 − n2 = (100a + 10b + c)− (100c + 10b + a)
= 100(a− c) + (c− a)
= 100(a− c)− (a− c)

So the gist of the trick is:

1. Take the difference between the most significant digit and the least significant digit and multiply it by
100 if it is a three-digit number, or if it is a four digit number multiply by 1000 (however, it only works
for 4-digit numbers and above if the middle digits are 0’s, for example 7002− 2007 the method works
but 7012− 2107 it doesn’t work).

2. Then subtract from that result the difference between the digits.

Let’s look at an example:

812− 218 =
Step 1: (8− 2)× 100 600
Step 2: 600− 6 594
Answer: 594

It also works for when the subtraction is a negative number, but you need to be careful:

105− 501 =
Step 1: (1− 5)× 100 −400
Step 2: −400− (1− 5) −396
Answer: −396

Like I said, you have to be careful with negative signs, a better (and highly recommended approach outlined
in the next section) is to say: 105−501 = −(501−105) = −396. By negating and reversing the numbers, you
deal with positive numbers which are naturally more manageable. After you find the solution, you negate
the result because of the sign switch.

Problem Set 1.5.1
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1. 654− 456 =

2. 256− 652 =

3. 4002− 2004 =

4. 702− 207 =

5. 453− 354 =

6. 5002− 2005 =

7. 2006− 6002 =

8. 2003− 3002 =

9. 678− 876 =

10. 2007 = 7002 =

1.5.2 Switching Numbers and Negating on Subtraction

Far too common, students make a mistake when subtracting two fractions whose result is a negative answer.
An example of this is 4 5

6−10 11
12 . Most of the time, it is incredibly easier to switch the order of the subtraction

then negating the answer. Taking the above problem as an example:

4
5
6
− 10

11
12

=−(10
11
12
− 4

5
6
)

=−(10
11
12
− 4

10
12

)

=−(6
1
12

)

Here is another example to illustrate the same point:

2
5
6
− 4

2
3

=−(4
2
3
− 2

5
6
)

=−(4
4
6
− 2

5
6
)

=−(1
5
6

)

Problems Set 1.5.2

1. 2
2
3
− 3

5
6

=

2. 4
2
3
− 6

3
5

=

3. 1
5
9
− 3

5
9

=

4. 2
3
4
− 4

3
5

=

5. 1
3
7
− 3 =

6. 2
3
8
− 3

1
4

=

7. 2
3
4
− 6

7
8

=

8. 3
4
5
− 8

9
10

=

9. 3
4
9
− 5

1
3

=

10. 5
6
7
− 12

13
14

=
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11. 3
1
6
− 6

1
3

=

12. 2
5
6
− 4

2
3

=

13. 4
7
8
− 12

23
24

=

14. 4
5
6
− 10

11
12

=

15. 2
3
5
− 7

1
10

=

16. 1
4
5
− 3

2
5

=

1.5.3
a

b · (b + 1)
+

a

(b + 1) · (b + 2)
+ · · ·

The best way to illustrate this trick is by example:

1
6

+
1
12

+
1
20

+
1
30

=
1

2 · 3 +
1

3 · 4 +
1

4 · 5 +
1

5 · 6
=

1 + 1 + 1 + 1
2 · 6

=
4
12

=
1
3

So the strategy when you see a series in the form of a
b·(b+1) + a

(b+1)·(b+2) + · · · is to add up all the
numerators and then divide it by the smallest factor in the denominators multiplied by the largest factor in
the denominators. Let’s look at another series:

1
42

+
1
56

+
1
72

+
1
90

+
1

110
=

1
6 · 7 +

1
7 · 8 +

1
8 · 9 +

1
9 · 10

+
1

10 · 11

=
1 + 1 + 1 + 1 + 1

6 · 11

=
5
66

Problems Set 1.5.3

1.
1
12

+
1
20

+
1
30

+
1
42

=

2.
1
72

+
1
90

+
1

110
+

1
132

=

3.
1
30

+
1
42

+
1
56

=

4.
7
30

+
7
20

+
7
12

=

1.5.4
a

b
+

b

a
Trick

Let’s look at when we add the two fractions
a

b
+

b

a
:

a

b
+

b

a
=

a2 + b2

ab

=
2ab

ab
− 2ab

ab
+

a2 + b2

ab

= 2 +
(a− b)2

ab

46



Here is an example:

5
7

+
7
5

= 2 +
(7− 5)2

7 · 5 = 2
4
35

There are some variations to this trick. For example:

11
13

+
2
11

=
11
13

+
13
11
− 11

11
= 2 +

22

143
− 1 = 1

4
143

This is a popular variation that is used especially on the last column of the test because the trick is there
but not as obvious.

The following are some practice problems to help you master this trick:

Problems Set 1.5.4

1.
12
13

+
13
12

=

2.
5
6

+
6
5

=

3.
15
19

+
19
15

=

4.
3
5

+
5
3
− 2 =

5.
7
5

+
5
7
− 1 =

6.
11
13

+
2
11

=

7.
7
13

+
6
7

=

8.
5
6

+ 1
1
5
− 2 =

9.
13
15

+
2
13

=

10.
5
8

+
8
5
− 9

40
=

11.
3
5

+
5
3

+
11
15

=

12.
5
7

+
7
5
− 3 =

13.
15
17

+
2
15

=

14.
11
15

+
4
11

=

15.
11
13

+
2
11

=

16.
14
15

+
1
14

=

17. 1
12
13

+ 1
1
12

=

18.
(

5
7

+
7
5

)
÷ 2 =

19.
11
12

+
1
11

=

20.
15
22

+
7
15

− 1 =

21.
11
14

+
3
11

− 2 =
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1.5.5
a

b
− na− 1

nb + 1

The following deals with subtracting fractions in the form
a

b
− na− 1

nb + 1
. Most of these problems are on the

3rd of 4th columns, and they are relatively easy to pick out because of how absurd the problem would be if
you didn’t know the formula:

a

b
− na− 1

nb + 1
=

(a + b)
b · (nb + 1)

So the numerator of the answer is just the sum of the numerator and denominator of the first number (i.e.
the number who’s numerator and denominators are small values) while the denominator of the answer is
just the multiplication of the two denominators. Here is an example:

6
7
− 29

36
=

6 + 7
7 · 36

=
13
252

Like I said it is easy to notice when to do this problem because, if you didn’t know the formula, it would be
relatively difficult to solve swiftly.

There is one variation to the formula which is:

a

b
− na + 1

nb− 1
=

−(a + b)
b · (nb− 1)

When approached with these problems, it is best to take stock of which type it is. The easiest way of
noticing which formula to apply is observing whether the denominator of the more “complicated” number
is one greater or one less than a multiple of the denominator of the “simple” number. Let’s look at another
example:

7
11
− 43

65
=
−(7 + 11)

11 · 65
=
−18
715

So on the above question, notice that 65 is one less a multiple of 11, so you know to apply the second formula.

Here are some practice problems to help you out:

Problems Set 1.5.5

1.
4
9
− 11

28
=

2.
2
7
− 7

29
=

3.
4
13

− 11
40

=

4.
7
15
− 27

61
=

5.
8
11
− 31

45
=

6.
8
11

− 87
122

=

7.
3
8
− 26

73
=

8.
4
5
− 67

86
=

9.
8
3
− 41

14
=

10.
8
9
− 87

100
=

11.
67
81

− 17
20

=

12.
3
8
− 14

41
=
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13.
7
15
− 15

29
=

14.
5
8
− 24

41
=

15.
8
9
− 31

37
=

16.
10
11
− 39

45
=

17.
11
16
− 32

49
=

18.
8
11
− 87

122
=

19.
4
7
− 35

64
=

20.
9
46
− 2

9
=

21.
3
8
− 14

41
=

22.
7
11
− 55

89
=
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2 Memorizations

2.1 Important Numbers

2.1.1 Squares

In order for faster speed in taking the test, squares up to 25 should definitely be memorized (however,
memorization of squares up to 50 would be highly recommended). In the event that memorization can’t
be achieved, remember the tricks discussed in Section 1 of the book as well as the method of foiling. The
following table should aid in memorization:

112 = 121 122 = 144 132 = 169 142 = 196

152 = 225 162 = 256 172 = 289 182 = 324

192 = 361 202 = 400 212 = 441 222 = 484

232 = 529 242 = 576 252 = 625 262 = 676

272 = 729 282 = 784 292 = 841 302 = 900

312 = 961 322 = 1024 332 = 1089 342 = 1156

352 = 1225 362 = 1296 372 = 1369 382 = 1444

392 = 1521 402 = 1600 412 = 1681 422 = 1764

432 = 1849 442 = 1936 452 = 2025 462 = 2116

472 = 2209 482 = 2304 492 = 2401 502 = 2500

On the next page you will find practice problems concerning squares. Avoid FOILing when possible so
that you can work on having automatic responses on most of the questions.
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Problems Set 2.1.1

1. 282 =

2. 3.22 =

3. 29× 29 =

4. 16× 16 =

5. 312 =

6. If 2.2 cm=1 inch, then
2.2 in equals how many cm.:

7. 34× 34 =

8. 17× 17 =

9. 23× 23 =

10. 192 =

11. 18× 18 =

12. 24% of 24 is:

13. 232 =

14. 322 =

15. 222 =

16. 14× 14 =

17. 212 =

18. 242 =

19. 31% of 31 is:

20. What is 27% of 27 :

21. 282 =

22. 342 =

23. 262 =

24. 172 =

25. 33× 33 =

26. Find x <0 when x2 = 729 :

27. (*)
√

1090× 31 =

28. (*)
√

291× 23 =

29.
√−196×√−256 =

30.
3
4

of 24% of 1.8 :

31. (*) 509×√905 =

32. (*)
√

327×√397×√487 =

33. (*) 144 =

34. (*)
√

362×√440 =

35. 959×√960 =

36. (*) 134 =

37. (*)
√

451× 451 =

38. (*)
√

574×√577×√580 =

39. (*) 174 =
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40. (*)
√

1025×√63 =

41. (*) 28× 56× 14÷ 42 =

42. (*)
√

1030× 25 =

43. (*) 214 =

2.1.2 Cubes

The following cubes should be memorized:

53 = 125 63 = 216 73 = 343 83 = 512

93 = 729 103 = 1000 113 = 1331 123 = 1728

133 = 2197 143 = 2744 153 = 3375 163 = 4096

173 = 4913 183 = 5832 193 = 6859 203 = 8000

Again, only FOIL when necessary on the practice problems on the next page.

52



Problem Set 2.1.2

1. (1728)
1
3 =

2. 113 =

3. 14× 14× 14 =

4. (−343)
1
3 =

5. 123 =

6. 163 =

7. 3
√

1728÷√36 =

8. 114 ÷ 11 =

9. (−12)3 =

10. (2197)
1
3 =

11. (−729)
1
3

12. 83 =

13. 153 =

14. 12× 12× 12 =

15. (125÷ 64)
1
3 =

16. 133 =

17. 7× 7× 7 =

18. −1331
1
3 =

19. 6× 6× 6 =

20. 15× 15× 15 =

21. (*) 3
√

1730× 145 =

22. (27÷ 216)
1
3 =

23. If x = 7 then (x + 3)(x2 − 3x + 9) =

24.
√

676÷ 3
√−2197 =

25. (1.728)
1
3 =

26. 83 × 53 =

27. 115 ÷ 121 =

28. 3
√

1.331 =

29. (*) 89× 90× 91 =

30. 3
√

.729 =

31. (*) (121)3 =

32. 34 − 63 + 92 =

33. 3
√

1728÷√576 =

34.
√

225× 3
√

3375 =

35. 83 − 93 =

36. (*) 133 × 34 =

37. 23 × 53 × 73 =

38. (*) 119× 120× 121 =

39. (*) 143 × 45 =

40. 84 =
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2.1.3 Powers of 2, 3, 5

Memorizing powers of certain integers like 2, 3, 5, etc... can be beneficial in solving a variety of problems
ranging from approximation problems to logarithm problems. In some instances, powers of integers can be
calculated based on other means than memorization. For example, 74 =

(
72

)2 = 492 = 2401 However, the
following powers should be memorized for quick calculation:

23 = 8 33 = 27 53 = 125

24 = 16 34 = 81 54 = 625

25 = 32 35 = 243 55 = 3125

26 = 64 36 = 729

27 = 128 37 = 2187

28 = 256

29 = 512

210 = 1024

The following are problems concerning higher powers of certain integers.
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Problem Set 2.1.3

1. 53 + 33 + 23 =

2. 23 − 33 − 43 =

3. (
√

64−√36)5 =

4. 5x = 125, x5 =

5. 43 − 53 =

6. 2x+1 = 32, x− 1 =

7. 23 + 33 + 53 =

8. 53 − 33 =

9. 3
√

125× 512 =

10. 23 + 33 + 43 − 53 =

11. x3 = 64, so 3x =

12. 45 × 55 =

13. 272 =

14. If x5 = −32, then 5x =

15. 25 × 53 =

16. 84 × 54 =

17. (*) 55 + 44 + 33 + 22 + 11 =

18. 26 × 54 =

19. 5x−1 = 3125, x + 1 =

20. 23 − 33 − 53 =

21.
34

23 · 53
=

22. 63 + 43 + 23 =

23. 34 + 43 = 5 · x. x =

24. (*) 51 + 42 + 33 + 24 + 15 =

25. 9x = 243, x =

26. 83 × 53 =

27. 23 × 83 × 53 =

28. 25 × 34 × 52 =

29. 24 × 72 × 53 =

30. 42 × 52 × 62 =

31. 25 × 33 × 52 =

32. 23 × 34 × 55 =

33. (33 − 23 + 13)× 53 =

34. 25 × 34 × 52 =

35. 25 × 34 × 55 =

36. 23 × 32 × 42 × 53 =
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2.1.4 Important Fractions

The following fractions should be memorized for reasons stated in Section 1.2.5. In addition, early problems
on the test involved converting these fractions to decimals and percentages, so if they were memorized, time
would be saved. Omitted are the “obvious” fractions (1

4 , 1
3 , 1

5 , etc...).

Fraction % Fraction % Fraction %/Decimal

1
6 162

3% 1
7 14 2

7% 1
8 121

2% = .125

5
6 831

3% 2
7 28 4

7% 3
8 371

2% = .375

3
7 42 6

7% 5
8 621

2% = .625

4
7 57 1

7% 7
8 871

2% = .875

5
7 71 3

7%

6
7 85 5

7%

Fraction % Fraction % Fraction % Fraction %

1
9 111

9% 1
11 9 1

11% 1
12 8 1

3% 1
16 61

4%

2
9 222

9% 2
11 18 2

11% 5
12 41 2

3% 3
16 183

4%

3
9 333

9% 3
11 27 3

11% 7
12 58 1

3% 5
16 311

4%

4
9 444

9% 4
11 36 4

11% 11
12 91 2

3% 7
16 433

4%

5
9 555

9% 5
11 45 5

11% 9
16 561

4%

6
9 666

9% 6
11 54 6

11% 11
16 683

4%

7
9 777

9% 7
11 63 7

11% 13
16 811

4%

8
9 888

9% 8
11 72 8

11% 15
16 933

4%

9
11 81 9

11%

10
11 9010

11%
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Fraction % Fraction %

1
13 7 9

13% 1
14 71

7%

2
13 15 5

13% 3
14 213

7%

3
13 23 1

13% 5
14 355

7%

4
13 30 10

13% 9
14 642

7%

5
13 38 6

13% 11
14 784

7%

6
13 46 2

13% 13
14 926

7%

7
13 53 11

13%

8
13 61 7

13%

9
13 69 3

13%

10
13 76 12

13%

11
13 84 8

13%

12
13 92 4

13%

To aid in memorization, it would first help to memorize the first fractions in each column. From, here
the others can be quickly derived by multiplying the initial fraction by the required integer to get the desired

results. For example, if you only had
1
11

memorized as 9
1
11

%, but you need to know what
5
11

is, then you
could simply multiply by 5:

5× 1
11

= 5×
(

9
1
11

%
)

= 45
5
11

%

Although memorization of all fractions is ideal, this method will result in correctly answering the ques-
tion, albeit a lot slower. On the next page is a set of practice problems concerning fractions.
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Problem Set 2.1.4

1. 12
1
2
% = (frac.)

2.
11
5

= %

3. Which is larger
5
9

or .56 :

4. Which is larger
5
8

or .622 :

5.
17
8

= (dec.)

6. .777 . . .− .333 . . . + .555 . . . =

7.
3
5

= %

8.
1
8

= (dec.)

9. Which is smaller
9
11

or .81 :

10.
1
16

= %

11. .125− .375− .625 =

12.
11
4

= %

13. Which is larger
5
9

or .555 or 55% :

14. .1666 . . .− .333 . . . + .8333 . . . =

15. The reciprocal of − 1.0625 is:

16. Which is larger .46 or
5
11

:

17. .111 . . .− .333 . . .− .666 . . . =

18. 37.5% = (frac.)

19. Which is smaller
9
11

or .8 :

20.
3
7

= %

21.
7
9

= %

22. .08333 . . . + .1666 . . . + .25 =

23. Which is smaller
7
11

or .56 :

24. Which is larger
9
11

or 81% :

25. .1666 . . . + .333 . . . + .8333 . . . =

26.
7
16

= % (dec.)

27. 32÷ .181818 . . . =

28.
2
7

= %

29. Which is larger − .375 or
−5
12

:

30. .333 . . .− .666 . . .− .999 . . . =

31.
1
14

= %

32. .0625 + .125 + .25 =

33. 55
5
9
% of 27 is:

34. 12.5% of 24 is:

35. Which is larger − .27 or
−2
7

:

36. 55÷ .454545 . . . =

37. .111 . . .− .1666 . . .− .333 . . . =
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38.
5
16

= % (dec.)

39. 363÷ .272727 . . . =

40. 21
3
7
% = (frac.)

41. 88× .090909 . . . =

42. 4
4
5
÷ .444 . . . =

43.
3
14

= %

44. 35
5
7
% = (frac.)

45. 72× .083333 . . . =

46. 78
4
7
% = (frac.)

47. 911÷ .090909 . . . =

48.
1
12

= %

49.
11
14

= %

50. 50 is 6.25% of:

51. 242÷ .181818 . . . =

52. 16
2
3
%× 482 =

53. 75÷ .5555 . . . =

54. 64
2
7
% = (frac.)

55. 1.21÷ .09090 . . . =

56. 1
7
8

= % (frac.)

57. 6.25% = (frac.)

58.
17
14

= %

59. 42
6
7
% = (frac.)

60. 3
3
4
% = (frac.)

61. 1 1
10% = (frac.)

62. 92
6
7

% = (frac.)

63. 7
1
7
% = (frac.)

64. 75 is 3.125% of:

65. 6
7
8

% = (dec.)

66.
13
14

= %

67. 3
1
13

% = (frac.)

68.
15
14

= %

69. 21
3
7
% = (frac.)
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2.1.5 Special Integers

The following integers have important properties which are exploited regularly on the number sense test.
They are:

999 999 = 27× 37 77 77 =
1001
13

3367 3367 =
10101

3
1430 1430 =

10010
7

1073 1073 = 29× 37 154 154 =
2002
13

1443 1443 =
10101

7

...

693 693 =
9009
13

The following are some examples showing how to use these special numbers:

999 Trick:

333× 1
27
× 1

37
=

1
3
× 999× 1

27
× 1

37

=
1
3
× 27 · 37

27 · 37

=
1
3

1001 Trick:

385× 13 = 77× 5× 13

=
1001
13

× 5× 13

= 1001× 5
= 5005

10101 Trick:

1443× 56 =
10101

7
× 56

= 10101× 56
7

= 10101× 8
= 80808
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Problem Set 2.1.5

1. 572× 21 =

2.
2
37
× 999 =

3. 33.67× 15 =

4. 715× 35 =

5. 3367× 21 =

6. 1073÷ 29 =

7. 715× 28 =

8. 429× 35 =

9. 63× 429 =

10. 1073÷ 37 =

11. 444× 5
37

=

12. 63× 572 =

13. 143× 49 = 1001×

14. 29× 37 =

15. 42× 715 =

16. 715× 98 =

17. 27× 37 =

18. 715× 77 =

19. 105× 715 =

20. 429× 357 =

21. 14× 715 =

22. 42× 429 =

23. 21× 336.7 =

24. 36× 3.367 =

25. 715× 49 =

26. 33.67× 27 =

27. 707× 715 =

28. 429× 21 =

29. 336.7× 3.3 =

30. 707× 429 =

31. 385× 13 =

32. 111× 7
27

=

33. 539× 13 =

34. 666× 2
37

=

35. (*)
5
37
× 5548 =

36. 333× 1
27
× 1

37
=

37. 462× 13 =

38. 999× 7
27
× 7

37
=

39. 6006÷ 462 =
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40. 444× 4
37

=

41. 770× 13 =

42. 888× 4
37

=

43. 666× 16
27
× 24

37
=

44. 143× 77 =

45. 143× 63 =

46. 888× 16
27

× 24
37

=

47. 84× 429 =

48. 143× 49 =

49. 444× 5
37

=

50. 222× 1
27

=

51. 63× 143 =

52. 555× 6
37

=

53. 444× 1
27

=

54. 143× 77 =

55. 888× 4
37

=

56. 666× 1
27

=

57. 777× 7
37

=

58. 444× 2
27

=

59. 999× 3
37

=

60. 666× 3
27

=

61. 888× 24
27

=

62. 999× 1
27

=

63. 143× 13× 7 =

64. 666× 18
37

=

65. 999× 5
27

=

66. 1001× 25 = 143×

67. 3× 11× 13× 21 =

68. 3× 5× 7× 11× 13 =

2.1.6 Roman Numerals

The following are the roman numerals commonly tested on the exam:

I = 1 V = 5 X = 10 L = 50

C = 100 D = 500 M = 1000

Knowing the above table and also the fact that you arrange the numerals in order from greatest to least
(M → I) with the exception of one rule: you can’t put four of the same numerals consecutively. For example,
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to express 42 in roman numerals it would not be 42 =XXXXII, it would be 42 =XLII. To circumvent the
problem of putting four of the same numerals consecutively, you use a method of “subtraction.” Anytime a
numeral of lesser value is placed in front of a numeral of greater value, you subtract from the larger numeral
the small numeral. So in our case 40 is represented by XL=50− 10 = 40. When converting numbers, it best
to think of the number as a sum of ones, tens, hundreds, etc... units). A good example of what I mean is to
express 199 in roman numerals. The way you want to look at it is 199 = 100 + 90 + 9 then express each one
as a roman numeral. So 100 = C, 90 = XC, and 9 = IX, so 199 = CXCIX.

Problem Set 2.1.6

1. MMXLII=

2. XLIV=

3. MMIII=

4. CXCIX=

5. MDCLXVI=

6. CDXLIV=

7. CCLXXVII=

8. MCDLIX=

9. CMXCIX=

10. MMCCXXII=

11. CXI−CC=

12. MD+DC=

13. CM+XC+IX=

14. DC−LX−VI=

15. XIII+MMIV=

16. MIII+MIV=

17. MC+DL+XIV=

18. MCXI+DLV=

19. MMV−DCXLI=

20. MMLIX−LIII=

21. MCXI−DLV=

22. CMIX−CDIV=

23. MDXLV−XV=

24. DCII÷IX=

25. CCCLXXIV÷XI=

26. CDI×V=

27. CCLXXX÷XIV=

28. MMV÷V=

29. XXVII×CXI=

30. MI×XI=

31. MMVII×XXV=

32. MCCLX÷XV=

33. MMVI×XI=

34. CDIV÷XL=
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2.1.7 Platonic Solids

The following is a list of important characteristics of Platonic Solids which are popularly asked on the test:

Platonic Solid Face Polygons # of Faces # of Vertices # of Edges

Tetrahedron Triangles 4 4 6

Cube Squares 6 8 12

Octahedron Triangles 8 6 12

Dodecahedron Pentagons 12 20 30

Icosahedron Triangles 20 12 30

If you ever forget one of the characteristics of the solids but remember the other two, you can always
use Euler’s formula of: Faces + Vertices − Edges = 2 to get the missing value.

The following is, albeit abridged, problem set concerning Platonic Solids. For best practice, cover up the
above to table!

Problem Set 2.1.7

1. A dodecahedron has vertices.

2. An icosahedron has congruent faces.

3. The area of the base of a tetrahedron is 4 ft2.
The total surface area is ft2.

4. A decahedron has congruent regions.

5. A tetrahedron has vertices.

6. An octahedron has edges.

7. A hexahedron has faces.

8. A dodecahedron is a platonic solid with 30
edges and vertices.

9. An octahedron has vertices.

10. An icosahedron is a platonic solid with 30 edges
and vertices.

11. A dodecahedron is a platonic solid with
30 edges and vertices.

2.1.8 π and e Approximations

Using the standard approximations of: π ≈ 3.1, e ≈ 2.7, and e2 ≈ 7.4 lead to the beneficial results of:

π2 ≈ 10, e3 ≈ 20, and π · e ≈ 8.5

Knowing these values, we can approximate various powers of e and π relatively simple and within the
require margin of error of ±5%. The following is an example where these approximations are useful:
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(e× π)4 = e4 × π4

= e · e3 · (π2
)2

≈ e · 20 · 100
≈ e · 2000
≈ 5400

The following are more practice problems concerning these approximations:

Problem Set 2.1.8

1. (*) 2π4 =

2. (*) e2 × π4 =

3. (*) e4 =

4. (*) π5 =

5. (*) (e× π)4 =

6. (*) π5 + e4 =

7. (*) π3 × e4 =

8. (*) (3π)4 =

9. (*) (e + 1.3)5 =

10. (*) [(π − .2)(+.3)]3 =

11. (*) (π + 1.9)3(e + 2.3)3 =

12. (*) (4e)3 =

13. (*) e4π4 =

14. (*) πeeπ =

15. (*) (3π + 2e)4 =

16. (*) ππee =

2.1.9 Distance Conversions

The following are important conversion factors for distances:

1 mile = 5280 ft.

1 mile = 1760 yd.

1 mile/hr =
22
15

ft/s

1 ft/min =
1
5

in/s

1 ft/hr =
1
5

in/min

1 mile/hr =
88
5

in/s

1 inch = 2.54 cm.

Problem Set 2.1.9
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1. 15 miles per hour= feet per second.

2. 3.5 yards= inches.

3. .375 of a foot= in.

4. 48 inches per second= ft/min.

5. 7.5 mph= inches per second.

6. 121
2% of a mile= yards.

7. 25% of a mile= yards.

8.
1
3

of a mile = feet.

9.
3
4

of 3 yards= inches.

10.
2
3

of a mile= ft.

11. 10 feet= yards.

12. 83
1
3
% of a foot= inches.

13. 30 mph= ft/sec.

14. 30 feet per minute= feet per second.

15. 36 in/s = inches per minute.

16. 480 inches per minute= in/s.

17. 45 mph = ft/s.

18. 33 ft/s= mph.

19. 7.5 mph= ft/s.

2.1.10 Conversion between Distance → Area, Volume

Students find linear conversions relatively simple (for example 1ft.= 12in.), however when asked to find how
many cubic inches are in cubic feet, they want to revert back to the linear conversion, which is incorrect
(1ft.3 6= 12in.3). When converting between linear distance to areas, and volumes you must square or cube
the conversion factor appropriately. So in our example, we know that:

1ft. = 12in. ⇒ 1ft.3 = (12)3in.3 = 1728in.3

Another example converting ft.2 to yd.2 is:

1yd. = 3ft. ⇒ 1yd.2 = (3)2ft.2 = 9ft.

Problem Set 2.1.10

1. 3 cubic yards= ft.3

2. 1 cubic foot= cubic inches.

3. 9 square yards= square feet.

4. 432 square inches= ft.2

5. 3 square yards= square feet.

6. 243 cubic feet= cubic yards.

7. 3 cubic feet= cubic inches.

8. 4320 cubic inches= cubic feet.
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9. 1 square meter= square centimeters.

10. 12 square feet= square yards.

11. 216 square inches= square feet.

12. 1728 cubic inches= cubic feet.

13. 1
1
3

cubic yards= cubic feet.

14. 2 cubic feet= cubic inches.

15. 5 square decamenters= square meters.

2.1.11 Fluid and Weight Conversions

The following are important fluid conversions. Although some conversions can be made from others (for
example, the amount of cups in a gallon doesn’t need to be explicitly stated, but it would be helpful to have
it memorized so you don’t have to multiply how many quarts in a gallon, how many pints in a quart, and
how many cups in a pint), it is recommended that everything in the table should be memorized:

1 gallon = 4 quarts

1 quart = 2 pints

1 pint = 2 cups

1 gallon = 16 cups

1 gallon = 128 oz.

1 cup = 8 oz.

1 tbsp. = .5 oz.

1 tsp. = 1
6 oz.

1 gallon = 231 in3

1 pound = 16 oz.

1 ton = 2000 lbs.

Problem Set 2.1.11

1. 1 quart= cups.

2. 1 quart= ounces.

3. 3 pints= ounces.

4. 3 gallons= cubic inches.

5.
2
3

gallon= cubic inches.

6. 1
1
3

gallon= cubic inches.

7. 75% of 1 gallon= ounces.

8. 256 ounces= pounds.

9. 750 pounds= % of a ton.

10. 75% of a gallon= pints.

11. 12
1
2
% of a pint= ounces.

12. 4 pints is what % of a gallon:

13. 2 quarts is what % of a pint:

14. 6 tablespoons is % of a cup.
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15. 9 cups is what % of a quart:

16. A quart is what % of a cup:

17. 2541 cubic inches= gallons.

18. 3 pints is what % of a cup:

19. 3 pints is what % of a gallon:

20. 5 gallons= cubic inches.

21. 32 ounces= pints.

22. 3.5 pints= quarts.

23. 2.5 pints= cups.

24. 37.5% of a gallon is pints.

25. 62.5% of a gallon is quarts.

26. 87.5% of a gallon is ounces.

27. 16 ounces is what part of a gallon:

28. 1 gallon= cubic inches.

29.
3
11

of a gallon= cubic inches.

30.
3
8

of a quart= ounces.

31.
7
11

of a gallon= cubic inches.

32. 3 quarts and 2 pints= ounces.

33. 7 quarts and 6 pints= gallons.

2.1.12 Celsius to Fahrenheit Conversions

These types of problems used to always be on the number sense tests in the early 1990’s, but have since
been noticeably absent until recently. Here are the conversion factors:

Fahrenheit → Celcius: C =
5
9
(F − 32)

Celcius → Fahrenheit: F =
9
5
C + 32

A couple of important degrees which pop-up frequently is that 32◦F = 0◦C, 212◦F = 100◦C, and −40◦F =
−40◦C.

Do the following conversions:

Problem Set 2.1.12

1. 25◦ C= ◦ F

2. −40◦ C= ◦ F
3. 98.6◦ F= ◦ C
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2.2 Formulas

The following are handy formulas which, when mastered, will lead to solving a large handful of problems.

2.2.1 Sum of Series

The following are special series who’s sums should be memorized:

Sum of the First m Integers
m∑

n=1

n = 1 + 2 + 3 + · · ·+ m =
m · (m + 1)

2

Example:

1 + 2 + 3 · · ·+ 11 =
11 · 12

2
= 66

Sum of the First m Odd Integers
m∑

n=1

2n− 1 = 1 + 3 + 5 + · · ·+ (2m− 1) =
(

(2m− 1) + 1
2

)2

= m2

Example:

1 + 3 + 5 + · · ·+ 15 =
(

15 + 1
2

)2

= 82 = 64

Sum of the First m Even Numbers
m∑

n=1

2n = 2 + 4 + 6 + · · ·+ 2m = m · (m + 1)

Example:

2 + 4 + 6 + · · ·+ 22 =
22
2
·
(

22
2

+ 1
)

= 11 · 12 = 132

Sum of First m Squares
m∑

n=1

n2 = 12 + 22 + · · ·+ m2 =
m · (m + 1) · (2m + 1)

6

Example:

12 + 22 + · · ·+ 102 =
10 · (10 + 1) · (2 · 10 + 1)

6
= 35 · 11 = 385

Sum of the First m Cubes
m∑

n=1

n3 = 13 + 23 + · · ·+ m3 =
(

m · (m + 1)
2

)2

Example:

13 + 23 + 33 + · · ·+ 103 =
(

10 · 11
2

)2

= 552 = 3025

Sum of the First m Alternating Squares
m∑

n=1

(−1)n+1n2 = 12 − 22 + 32 − · · · ±m2 = ±m · (m + 1)
2

Examples:

12 − 22 + 32 − · · ·+ 92 =
9 · 10

2
= 45

12 − 22 + 32 − · · · − 122 = −12 · 13
2

= −78

Sum of a General Arithmetic Series
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m∑

i=1

ai = a1 + a2 + a3 + · · ·+ am =
(a1 + am) ·m

2

To find the number of terms: m =
am − a1

d
+ 1

Where d is the common difference.

Example:
8 + 11 + 14 + · · ·+ 35 =

m =
35− 8

3
+ 1 = 10

So
∑

=
(8 + 35) · 10

2
= 43 · 5 = 215

Sum of an Infinite Geometric Series∞∑
n=0

a1 · (d)n = a1(1 + d + d2 + · · · ) =
a1

1− d

Where d is the common ratio with |d| < 1 and a1 is the first term in the series.

Examples:

3 + 1 +
1
3

+ · · · = 3
1− 1

3

=
3
2
3

=
9
2

4− 2 + 1− 1
2

+ · · · = 4
1− (−1

2

) =
4
3
2

=
8
3

Special Cases: Factoring
Sometimes simple factoring can lead to an easier calculation. The following are some examples:

3 + 6 + 9 + · · ·+ 33 = 3 · (1 + 2 + · · ·+ 11)

= 3
(

11 · 12
2

)

= 18 · 11 = 198

11 + 33 + 55 + · · ·+ 99 = 11 · (1 + 3 + 5 + · · ·+ 9)

= 11 ·
(

1 + 9
2

)2

= 11 · 25 = 275

Another important question involving sum of integers are word problems which state something similar to:
The sum of three consecutive odd numbers is 129, what is the largest of the numbers?

In order to solve these problems it is best to know what you are adding. You can represent the sum of
the three odd numbers by: (n− 2) + n + (n + 2) = 129. From this you can see that if you divide the number
by 3, you will get that the middle integer is 43, thus making the largest integer 43 + 2 = 45.

Here is another example problem: The sum of four consecutive even numbers is 140, what is the small-
est?

For this one you can represent the sum by (n− 2) + (n) + (n + 2) + (n + 4) = 140, so dividing the number
by 4 will get you the integer between the second and third even number. So 140÷ 4 = 35, so the two middle
integers are 34 and 36, making the smallest integer 32.

So from this we have learned that you can divide the sum by the number of consecutive integers you
are adding, and if the number of terms are odd, you get the middle integer, and if the number of terms are
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even, you get the number between the two middle integers.

The following are some more practice problems concerning the sum of series:

Problem Set 2.2.1

1. 2 + 4 + 6 + 8 + · · ·+ 22 =

2. 1 + 2 + 3 + 4 + · · ·+ 21 =

3. 1 + 3 + 5 + 7 + · · ·+ 25 =

4. The 25th term of 3, 8, 13, 18, · · · :

5. 6 + 4 +
8
3

+
16
9

+ · · · =

6. 2 + 4 + 6 + 8 + · · ·+ 30 =

7. 1 + 3 + 5 + 7 + · · ·+ 19 =

8.
3
5
− 3

10
+

3
20
− · · · =

9. The 20th term of 1, 6, 11, 16, · · · :

10. 22 + 20 + 18 + 16 + · · ·+ 2 =

11. 1 + 3 + 5 + · · ·+ 17 =

12. 2 + 4 + 6 + · · ·+ 44 =

13. 1 +
1
3

+
1
9

+
1
27

+ · · · =

14. 13 + 23 + 33 + · · ·+ 63 =

15. 6 + 12 + 18 + · · ·+ 66 =

16. 3 + 5 + 7 + 9 + · · ·+ 31 =

17. 2 + 1 +
1
2

+
1
4

+ · · · =

18. −3
2

+
1
2
− 1

6
+

1
18
− · · · =

19. 3 + 5 + 7 + 9 + · · ·+ 23 =

20.
4
7

+
8
49

+
16
343

+ · · · =

21. 1 + 4 + 7 + · · ·+ 25 =

22. 4 + 1 +
1
4

+
1
16

+ · · · =

23. 2 +
2
5

+
2
25

+ · · · =

24. 3 + 9 + 15 + 21 + · · ·+ 33 =

25. 7 + 14 + 21 + 28 + · · ·+ 77 =

26. The 11th term in the arithmetic sequence
12, 9.5, 7, 4.5 · · · is:

27. 4 + 8 + 12 + · · ·+ 44 =

28. 8 + 16 + 24 + 32 + · · ·+ 88 =

29. 51 − 50 + 5−1 − 5−2 + · · · =

30. (x)+(x+2)+(x+4) = 147, then (x)+(x+4) =

31. 6 + 12 + 18 + 24 + · · ·+ 36 =

32. 3 + 8 + 13 + 18 + · · ·+ 43 =

33. 12 + 22 + 32 + 42 + 52 + 62 =

34. 5 + 1 +
1
5

+
1
25

+ · · · =

71



35.
2
3

+
1
2

+
3
8

+
9
32

+ · · · =

36. 3 + 5 + 7 + 9 + · · ·+ 31 =

37. 7 + 14 + 21 + 28 + 35 + 42 =

38. 8 + 10 + 12 + · · ·+ 20 =

39. 10 + 15 + 20 + 25 + · · · 105 =

40. 8 + 4 + 2 + 1 + · · · =

41. 4 + 8 + 12 + 16 + · · ·+ 44 =

42. (*) 13 + 23 + 33 + · · ·+ 63 =

43. 6 + 12 + 18 + 24 + · · ·+ 66 =

44. 2 + 6 + 10 + · · ·+ 42 =

45. 13 − 23 + 33 − 43 + 53 =

46. 3 + 1
1
2

+
3
4

+ · · · =

47. 14 + 28 + 42 + 56 + 70 + 84 =

48. 121 + 110 + 99 + · · ·+ 11 =

49. 2 + 9 + 16 + 23 + · · ·+ 44 =

50. 13 + 26 + 39 + 52 + 65 + 78 =

51. 36 + 32 + 28 + · · ·+ 12 =

52. 88 + 80 + 72 + · · ·+ 8 =

53. The sum of 3 consecutive odd integers is 105.
The largest integer:

54. 41 − 40 + 4−1 − 4−2 + · · · =

55. (*) (1 + 2 + 3 + · · ·+ 29)2 =

56. (*) 13 + 23 + 33 + · · ·+ 113 =

57.
1
5

+
2
5

+
3
5

+ · · ·+ 1
4
5

+ 2 =

58. (63 + 43 + 23)− (53 + 33 + 13) =

59. 3− 1− 1
3
− 1

9
− 1

27
− · · · =

60.
1
3

+
2
3

+ 1 + 1
1
3

+ · · ·+ 2
1
3

=

61. 33 − 43 − 23 + 53 =

62. 6− 1− 1
6
− 1

36
− · · · =

63. 2 + 5 + 8 + · · ·+ 20 =

64. (*) 13 + 23 + 33 + · · ·+ 133 =

65.
3
4

+
9
16

+
27
64

+ · · · =

66.
1
4

+
3
4

+
5
4

+ · · ·+ 15
4

=

67. (*) (3 + 6 + 9 + · · ·+ 30)2 =

68. (*) 13 + 23 + 33 + · · ·+ 83 =

2.2.2 Fibonacci Numbers

It would be best to have the Fibonacci numbers memorized up to F15 because they crop up every now
and then on the number sense test. In case you are unaware, the fibonacci sequence follows the recursive
relationship of Fn−2 + Fn−1 = Fn. The following is a helpful table:
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F1 = 1 F2 = 1 F3 = 2 F4 = 3

F5 = 5 F6 = 8 F7 = 13 F8 = 21

F9 = 34 F10 = 55 F11 = 89 F12 = 144

F13 = 233 F14 = 377 F15 = 610

The most helpful formula to memorize concerning Fibonacci Numbers is the the sum of the first n Fi-
bonacci Numbers is equal to Fn+2 − 1.

A common problem asked on the latter parts of the number sense test is:

Find the sum of the first eight terms of the Fibonacci sequence 2, 5, 7, 12, 19, . . ..

Now there are two methods of approach for doing this. The first requires knowledge of large Fibonacci
numbers:

Method 1:

The sum of the first n-terms of a general Fibonacci sequence a, b, a + b, a + 2b, 2a + 3b, . . . is∑
= a · (Fn+2 − 1) + d · (Fn+1 − 1). Where d = (b− a).

So for our example:
∑

= 2 · (F10 − 1) + (5− 2) · (F9 − 1) = 2 · 54 + 3 · 33 = 108 + 99 = 207

Method 2:

The other method of doing this sum requires memorization of a formula for each particular sum. The
following is a list of the sums of a general Fibonacci sequence a, b, a + b, a + 2b, 2a + 3b, . . . for 1-12 terms
(the number of terms which have been on the exam):
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n Fibonacci Number Sum of First Fn Numbers Formula

1 a a a = F1

2 b a + b a + b = F3

3 a + b 2a + 2b 2(a + b) = 2 · F3

4 a + 2b 3a + 4b 4(a + b)− a = 4 · F3 − a

5 2a + 3b 5a + 7b 7(a + b)− 2a = 7 · F3 − 2a

6 3a + 5b 8a + 12b 4(2a + 3b) = 4 · F5

7 5a + 8b 13a + 20b 4(3a + 5b) + a = 4 · F6 + a

8 8a + 13b 21a + 33b 7(3a + 5b)− 2b = 7 · F6 − 2b

9 13a + 21b 34a + 54b 7(5a + 8b)− (a + 2b) = 7 · F7 − F4

10 21a + 34b 55a + 88b 11(5a + 8b) = 11 · F7

11 34a + 55b 89a + 143b 11(8a + 13b) + a = 11 · F8 + a

12 55a + 89b 144a + 232b 18(8a + 13b)− b = 18 · F8 − b

So in our case, we are summing the first 8 terms, which is just 7 ·F6−2b, where F6 represents the sixth term
in the sequence of 2, 5, 7, 12, 19, . . . (which is 31), so 7 · 31− 2 · 5 = 217− 10 = 207.

So in solving it this way you have to calculate the 6th term in the sequence as well as knowing the for-
mula. Usually it will be required to calculate a middle term in the sequence, and then apply the formula.

These type of questions are usually computationally intense, so it is recommended to skip them and come
back to work on them after the completion of all other problems. The following are some more practice
problems:

Problem Set 2.2.2

1. The sum of the first 11 terms of the Fibonacci
Sequence
2, 4, 6, 10, 16, 26, . . .:

2. The sum of the first 9 terms of the Fibonacci
Sequence
3, 5, 8, 13, 21, . . .:

3. The sum of the first 9 terms of the Fibonacci
Sequence
4, 7, 11, 18, 29, . . .:

4. The sum of the first 10 terms of the Fibonacci
Sequence

4, 5, 9, 14, 23, . . .:

5. The sum of the first 11 terms of the Fibonacci
Sequence
1, 5, 6, 11, 17, 28, . . .:

6. The sum of the first 12 terms of the Fibonacci
Sequence
1, 2, 3, 5, 8, 13, 21, . . .:

7. The sum of the first 11 terms of the Fibonacci
Sequence
2, 5, 7, 12, 19, 31, . . .:
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8. The sum of the first 9 terms of the Fi-
bonacci Sequence
3,8,11,19, . . .:

9. The sum of the first 9 terms of the Fibonacci
Sequence
2, 4, 6, 10, 16, . . .:

10. The sum of the first 9 terms of the Fibonacci
Sequence
1, 5, 6, 11, 17, . . .:

11. The sum of the first 9 terms of the Fibonacci
Sequence
3, 5, 8, 13, 21, . . .:

12. The sum of the first 9 terms of the Fibonacci
Sequence
−3, 4, 1, 5, 6, . . .:

13. The sum of the first 9 terms of the Fibonacci
Sequence
1, 1, 2, 3, 5, . . .:

14. The sum of the first 9 terms of the Fibonacci
Sequence
−3, 2,−1, 1, 0, . . .:

15. The sum of the first 9 terms of the Fi-
bonacci Sequence
1,3,4,7,11, . . .:

16. 1 + 1 + 2 + 3 + 5 + 8 + · · ·+ 55 =

17. 1 + 3 + 4 + 7 + 11 + 18 + · · ·+ 123 =

18. 3 + 6 + 9 + 15 + 24 + · · ·+ 267 =

19. 4 + 6 + 10 + 16 + 26 + · · ·+ 288 =

2.2.3 Integral Divisors

The following are formulas dealing with integral divisors. On all the formulas, it is necessary to prime fac-
torize the number of interest such that: n = pe1

1 · pe2
2 · pe3

3 · · · pen
n .

Number of Prime Integral Divisors
Number of prime integral divisors can be found by simply prime factorizing the number, and count how
many distinct prime numbers you have in it’s representation.

Example:
Find the number of prime integral divisors of 120.
120 = 5 · 23 · 3 ⇒ # of prime divisors = (1 + 1 + 1) = 3

Number of Integral Divisors
Number of Integral Divisors = (e1 + 1) · (e2 + 1) · (e3 + 1) · · · (en + 1)

Example:
Find the number of integral divisors of 48.
48 = 24 · 3 ⇒ (4 + 1) · (1 + 1) = 10

Sum of the Integral Divisors

∑
=

pe1+1
1 − 1
p1 − 1

· pe2+1
2 − 1
p2 − 1

· · · p
en+1
n − 1
pn − 1

Example:
Find the sum of the integral divisors of 36.
36 = 22 · 32
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∑
=

23 − 1
2− 1

· 33 − 1
3− 1

=
7
1
· 26

2
= 7 · 13 = 91

Number of Relatively Prime Integers less than N

Number of Relatively Prime = (p1 − 1) · (p2 − 1) · · · (pn − 1) · (pe1−1
1 ) · (pe2−1

2 ) · · · (pen−1
n )

or
Number of Relatively Prime =

p1 − 1
p1

· p2 − 1
p2

· · · pn − 1
pn

× n

Both techniques are relatively (no pun intended) quick and you should do whichever you feel comfort-
able with. Here is an example to display both method:

Example:
Find the number of relatively prime integers less than 20.
20 = 22 · 5
# of Relatively Prim Integers = (2− 1) · (5− 1) · (22−1) · (51−1) = 4 · 2 = 8
or
# of Relatively Prim Integers =

1
2
· 4
5
× 20 = 8

Sum of Relatively Prime Integers less than N

∑
= (# of Relatively Prime Integers)× n

2

Example:
Find the sum of the relatively prime integers less than 24.
24 = 23 · 3

# of Relatively Prim Integers =
1
2
· 2
3
× 24 = 8

∑
= 8× 24

2
= 8 · 12 = 96

We should introduce a distinction between proper and improper integral divisors here. A proper integral
divisor is any positive integral divisor of the number excluding the number itself. So for example, the num-
ber 14 has 4 total integral divisors (1, 2, 7, 14), but only 3 proper integral divisors (1, 2, 7). Some number
sense questions will ask for the sum of proper integral divisors or the number of proper integral divisors of
number. When those are asked, you need to be aware to exclude the number itself from those calculations.
For example, the sum of the proper integral divisors of 22 = 3× 12− 22 = 36− 22 = 14.

In addition, on the questions asking for the number of co-prime (or relatively prime) within a range of
values, it is best to calculate the total number of relatively prime integers and then start excluding ones that
are out of range. For example, to calculate the number of integers greater than 3 which are co-prime to 20
you would find the number of co-prime integers less than 20 which is (2− 1)(5− 1)(2(2−1))(51−1) = 8 then
you can exclude the numbers 1 and 3. So the number of integers greater than three which are co-prime to
20 would be 8− 2 = 6. The quickest way of finding whether or not an integer is co-prime to another integer,
is to put it in fraction form and see if the fraction is reducible. For example, 3 is co-prime to 20 because 3

20
is irreducible.

With integral divisor problems it is best to get a lot of practice so that better efficiency can be reached.
The following are some sample practice problems:

Problem Set 2.2.3
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1. 30 has how many positive prime
integral divisors:

2. 36 has how many positive integral
divisors:

3. The sum of the prime factors of 42 is:

4. The number of prime factors of 210 is:

5. The number of positive integral divisors
of 80 is:

6. The number of positive integral divisors
of 24 × 5 is:

7. The sum of the distinct prime factors of
75 total:

8. The number of positive integral divisors
of 96 is:

9. The number of positive integral divisors
of 100 is:

10. The sum of the positive integral divisors
48 is:

11. The sum of the proper positive integral
divisors of 24 is:

12. The sum of the positive integral divisors
of 28 is:

13. The number of positive integral divisors
of 61 × 32 × 23:

14. The sum of the proper positive integral
divisors of 30 is:

15. How many positive integral divisors does
81 have:

16. How many positive integral divisors does
144 have:

17. The sum of the positive integral divisors
3× 5× 7 is:

18. The number of positive integral divisors of
65 × 43 × 21:

19. The sum of the positive integral divisors
of 20 is:

20. The number of positive integral divisors of
24 is:

21. The sum of the positive integral divisors
of 28 is:

22. The number of positive integral divisors of
23 × 34 × 45:

23. The number of positive integral divisors of
64 is:

24. The sum of the proper positive integral
divisors of 36 is:

25. The number of positive integral divisors of
24 × 36 × 510 is:

26. The number of positive integral divisors of
53 × 32 × 21:

27. How many positive integers less than 90 are
relatively prime to 90:

28. Sum of the proper positive integral divisors
of 18 is:

29. The sum of the positive integers less than 18
that are relatively prime to 18:

30. The number of positive integral divisors of
12× 33 × 24:
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31. How many positive integers less than
16× 25 are relatively prime to
16× 25:

32. How many integers between 30 and 3 are
relatively prime to 30:

33. How many positive integers divide 48:

34. How many positive integer less than 9× 8
are relatively prime to 9× 8:

35. How many integers between 1 and 20 are
relatively prime to 20:

36. The number of positive integral divisors
of 50× 54 × 23:

37. How many positive integers divide 64:

38. The sum of the positive integral divisors
of 48:

2.2.4 Number of Diagonals of a Polygon

The formula for the number of diagonals in a polygon is derived by noticing that from each of the n vertices
in an n-gon, you can draw (n− 3) diagonals creating n · (n− 3) diagonals, however each diagonal would be
drawn twice, so the total number of diagonals is:

# of Diagonals =
n · (n− 3)

2

As an example lets look at the number of diagonals in a hexagon:

# of Diagonals in a Hexagon =
6 · 3
2

= 9

. Here are some problems for you to practice this formula:

Problem Set 2.2.4

1. The number of diagonals a 5-sided
regular polygon has:

2. If a regular polygon has 27 distinct
diagonals, then it has how many sides:

3. A pentagon has how many diagonals:

4. A nonagon has how many diagonals:

5. An octagon has how many diagonals:

6. A decagon has how many diagonals:

7. A rectangle has how many diagonals:

8. A septagon has how many diagonals:

2.2.5 Exterior/Interior Angles

When finding the exterior, interior, or the sum of exterior or interior angles of a regular n-gon, you can use
the following formulas:
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Sum of Exterior Angles: 360◦

Exterior Angle:
360◦

n

Interior Angle: 180◦ − 360◦

n
=

180◦(n− 2)
n

Sum of Interior Angles: n · 180◦(n− 2)
n

= 180(n− 2)

If you were to only remember one of the above formulas, let it be that the sum of the exterior angles
of every regular polygon be equal to 360◦. From there you can derive the rest relatively swiftly (although it
is highly recommended that you have all formulas memorized).

Example: Find the sum of the interior angles of an octagon.
Solution:

∑
= 180(8− 2) = 1080.

In order to find the interior angle from the exterior angle, you used the fact that they are supplements.
Both supplements and complements of angles appear on the number sense test every now and then, so here
are their definitions:

Complement of θ = 90◦ − θ
Supplement of θ = 180◦ − θ

Here are some practice problems on both exterior/interior angles as well as supplement/complement:

Problem Set 2.2.5

1. A regular nonagon has an interior
angle of:

2. An interior angle of a regular pentagon
has a measure of:

3. The supplement of an interior angle of
a regular octagon measures:

4. The angles in a regular octagon total:

5. The measure of an interior angle of
a regular hexagon measures:

6. The sum of the angles in a regular
decagon is:

7. The supplement of a 47◦ angle is:

8. The sum of the interior angles of a
regular pentagon is:

2.2.6 Triangular, Pentagonal, etc... Numbers

We are all familiar with the concept of square numbers 1, 4, 9, 16, . . . , n2 and have a vague idea of how they
can be viewed geometrically (n2 can be represented by n rows of dots by n columns of dots). This same
concept of translating “dots to numbers” can extend to any regular polygon. For example, the idea of a
triangular number is the amount of dots which can be arranged into an equilateral triangle (1, 3, 6, . . .). The
following are formulas for these “geometric” numbers:
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Triangular: Tn =
n(n + 1)

2

Square: Sn =
n(2n− 0)

2
= n2

Pentagonal: Pn =
n(3n− 1)

2

Hexagonal: Hn =
n(4n− 2)

2

Heptagonal: En =
n(5n− 3)

2

Octagonal: On =
n(6n− 4)

2

M-Gonal: Mn =
n[(M − 2)n− (M − 4)]

2

As one can see, only the last formula is necessary for memorization (all the others can be derived from that
one).

Some other useful formulas:

Sum of Consectutive Triangular Numbers: Tn−1 + Tn = n2

Sum of First m Triangular Numbers:
m∑

n=1

Tn = T1 + T2 + · · ·+ Tm =
m(m + 1)(m + 2)

6

Sum of the Same Triangular and Pentagonal Numers: Tn + Pn = 2n2

Examples:

1. The 6th Triangular Number?

2. The 4th Octagonal Number?

3. The 5th Pentagonal Number?

4. The Sum of the 6th and 7th Triangular Num-
bers?

6(6 + 1)
2

= 21

4(6 · 4− 4)
2

=
4 · 20

2
= 40

5(3 · 5− 1)
2

=
5 · 14

2
= 35

72 = 49

Problem Set 2.2.6:

1. The 7th pentagonal number:

2. The 4th octagonal number:

3. The 5th pentagonal number:

4. The 8th octagonal number:

5. The 12th hexagonal number:

6. The 7th septagonal number is:

7. The 5th pentagonal number is:

8. The 6th pentagonal number is:

9. The 5th hexagonal number is:

10. The 11th triangular number is:
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11. The 12th triangular number is:

12. The 6th hexagonal number is:

13. The sum of the 5th triangular and

the 6th triangular numbers:

14. The sum of the 3rd triangular and
the 3rd pentagonal numbers:

2.2.7 Finding Sides of a Triangle

A popular triangle question gives two sides of a triangle and asks for the minimum/maximum value for the
other side conforming to the restriction that the triangle is right, acute or obtuse. The two sets of formulas
which will aid in solving these questions are:

Triangle Inequality

a + b > c

Variations on the Pythagorean Theorem

Right Triangle: a2 + b2 = c2

Acute Triangle: a2 + b2 > c2

Obtuse Triangle: a2 + b2 < c2

If you don’t have the Pythagorean relationships for acute/obtuse triangle memorized, the easiest way to
think about the relationship on the fly is remembering that an equilateral triangle is acute so a2 + a2 > a2.

Let’s look at some examples:

An acute triangle has integer sides of 4, x,and 9. What is the largest value of x?

Solution: Using the Pythagorean relationship we know: 42 + 92 > x2 or 97 > x2. Knowing this and the
fact that x is an integer, we know that the largest value of x is 9.

An acute triangle has integer sides of 4, x,and 9. What is the smallest value of x?

Solution: For this we use the triangle inequality. We want 9 to be the largest side (so x would have to be
less than 9), so apply the inequality knowing this: 4+x > 9 which leads to the smallest integer value of x is 6

An obtuse triangle has integer sides of 7, x, and 8. What is the smallest value of x?

Solution: For this, we want the largest value in the obtuse triangle to be 8 then apply the Triangle Inequal-
ity: 7 + x > 8 with x being an integer. This makes the smallest value of x to be 2.

An obtuse triangle has integer sides of 7, x, and 8. What is the largest value of x?

Solution: Here, x is restricted by the Triangle Inequality (if we used the Pythagorean Theorem for obtuse,
we would get an unbounded result for x: 72 +82 < x2 makes x unbounded). So we know from that equation:
7 + 8 > x so the largest integer value for x is 14.
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Another important type of triangle problem involves being given one side of a right triangle and having
to compute the other sides. For example, the sides of a right triangle are integers, one of its sides is 9, what
is the hypotenuse?

Where this gets it’s foundation is from the Pythagorean Theorem which states that a2 + b2 = c2. If
the smallest side is given (call it a, then we can express a2 = c2 − b2 = (c − b)(c + b)). Now is where the
trick comes into play. The goal becomes to find two numbers that when subtracted together from each other
multiplied with them added to each other is the smallest side squared. When the smallest side squared gives
an odd number (in our case 81 is odd), the goal is reduced considerably by thinking of taking consecutive
integers (so c− b = 1) and c + b = a2. The easiest way to find two consecutive integers whose sum is a third
number is to divide, the third number by 2, and the integers straddle that mixed number. So in our case
92 = 81÷ 2 = 40.5 so b = 40 and c = 41, and we’re done. Let’s look at another example:

Example: The sides of a right triangle are integers, one of its sides is 11, what is the other side?
Solution: 112 = 121 which is odd, so 121÷ 2 = 60.5 so the other side is 60.

Very seldom do they give you a side who’s square is even. In that case let’s look at the result:

Example: The sides of a right triangle are integers, one of its sides is 10, what is the hypotenuse?
Example: The easiest way of solving these problems is divide the number they give you by a certain
amount to get an odd number, then perform the usual procedure on that odd number (outlined above), then
when you get the results multiply each side by the number you originally divided by. Let’s look at what
happens in our example. So to get an odd number we must divide 10 by 2 to get 5. Now to find the other
side/hypotenuse with smallest side given is 5 you do: 52 ÷ 2 = 12.5 ⇒ b = 12 and c = 13. Now to get the
correct side/hypotenuse lengths, we must multiply by what we originally divided by (2) so b = 12 ·2 = 24 and
= 13 ·2 = 26. As you can see there are a couple of mores steps to this procedure, and you have to remember
what you divided by at the beginning so you can multiply the side/hypotenuse by that same amount at the
end.

There are some variations to this, say they tell you that the hypotenuse is 61 and ask for the smallest
side. Since half of the smallest side squares is roughly the hypotenuse, you will be looking for squares who
are near 61 · 2 = 122, so you know that s = 11.

In addition, there are some algebraic applications that frequently ask the same thing. For example, if it
is given that x2 − y2 = 53 and asks you to solve for y. You do the same procedure: (x + y)(x − y) = 53,
since 53 is odd, you are concerned with consecutive numbers adding up to 53, so 53 ÷ 2 = 26.5 ⇒ x = 27
and y = 26.

Getting practice with these problems are critical so that you can immediately know which formula to
apply and which procedure to follow. Complete the following:

Problem Set 2.2.7

1. An obtuse triangle has integral sides of 3,x,
and 7. The largest value for x is:

2. The sides of a right triangle are integers. If
one leg is 9 then the other leg is:

3. x, y are positive integers with x2 − y2 = 53
Then y=

4. A right triangle with integer sides has a
hypotenuse of 113. The smallest leg is:
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5. An acute triangle has integer side lengths of
4,7,and x. The smallest value for x is:

6. An acute triangle has integer side lengths of
4,7,and x. The largest value for x is:

7. x,y are integers with x2 − y2 = −67
then x is:

8. An obtuse triangle has integer side
lengths of x,7, and 11. The smallest
value of x is:

9. a2 + b2 = 1132 where 0 < a < b and a, b are
integers. Then a =

10. The sides of a right triangle are x,7,and 11. If
x < 7 and x = a

√
2 then a =

11. An acute triangle has integer sides of 2,7,and
x.
The largest value of x is:

12. An obtuse triangle has integer sides of
6,x,and 11. The smallest value of x is:

13. An acute triangle has integer sides of 7,
11,and x. The smallest value of x is:

14. An obtuse triangle has integer sides of
8,15, and x. The smallest value of x is:

15. The sides of a right triangle are integral. If
one leg is 13, find the length of the other leg:

16. A right triangle has integer side lengths of
7,x,and 25. Its area is:

2.2.8 Equilateral Triangle Formulas

Area of an Equilateral Triangle when knowing the side-length s:

Area =
s2 · √3

4
Area of an Equilateral Triangle when knowing the height h:

Area =
h2 · √3

3
Finding the height when given the side length s:

Height =
s · √3

2
Example:

An equilateral triangle’s perimeter is 12. It’s area is 4k · √3. What is k?

s =
12
3

= 4 so A =
42 · √3

4
= 4

√
3 ⇒ k = 1

Example:

An equilateral triangle has a height of 4, what is its side length?

h = 4 =
√

3 · s
2

⇒ s =
4 · 2√

3
=

8 · √3
3

Here are some practice problems for this formula:
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Problem Set 2.2.8

1. The sides of an equilateral triangle are
2
√

3 cm, then its height is:

2. The area of an equilateral triangle is
9
√

3cm2, then its side length is:

3. If the area of an equilateral triangle is
3
√

3ft2 then its side length is:

4. The height of an equilateral triangle is
12 in. Its area is 4k

√
3, k =

5. The perimeter of an equilateral triangle is
12 cm. Its area is k

√
3cm2.k =

6. Find the perimeter of an equilateral triangle
whose area is 9

√
3cm2 :

7. The area of an equilateral triangle is
3
√

3in2. Its height is:

8. An equilateral triangle has an area of
27
√

3cm2. Its height is:

2.2.9 Formulas of Solids

Usually basic formulas for spheres, cubes, cones, and cylinders are fair game for the number sense test. In
order to solve these problems, memorize the following table:

Type of Solid Volume Surface Area

Cube s3 6s2

Sphere
4
3
πr3 4πr2

Cone
1
3
πr2h πrl + πr2

Cylinder πr2h 2πrh

In the above formulas, s is the side-length, r is the radius, h is the height, and l is the slant height.
In addition to knowing the above formulas, a couple of other ones are:

Face Diagonal of a Cube = s
√

2
Body Diagonal of a Cube = s

√
3

Problem Set 2.2.9

1. Find the surface area of a square who’s
side length is 11in. :

2. Find the surface area of a sphere who’s
radius is 6in. :

3. If the radius of a sphere is tripled,
then the volume is multiplied by:

4. The total surface area of a cub with an
edge of 4 inches is:
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5. A cube has a volume of 512cm2. The
area of the base is:

6. A cube has a surface area of 216cm2.
The volume of the cube is:

7. If the total surface area of a cube is 384cm2

then the volume of the cube is:

8. Find the volume of a cube with an edge
of 12 cm.:

9. A tin can has a diameter of 8 and a
height of 14. The volume is kπ, k =

2.2.10 Combinations and Permutations

For most this is just a refresher on the definitions of nCk and nPk:

nCk =
n!

k! · (n− k)!

nPk =
n!

(n− k)!

Here is an example:

7C4 =
7!

4!(7− 4)!
=

7 · 6 · 5
3 · 2 = 35

With combinations and permutations (and factorials in general) you want to look at ways of canceling
factors from the factorial to ease in calculation. In addition, the following is a list of the factorials which
should be memorized for quick access:

3! = 6 4! = 24 5! = 120 6! = 720

7! = 5040 8! = 40320 9! = 362880 10! = 3628800

Another often tested principle on Combinations is that:

nCk = nCn−k.
The above will show up in the form of questions like this:

Problem: 5C2 =5 Ck. k =?

Solution: Using the above formula, you know that k = 5− 2 = 3.

Another often tested question on Combinations and Permutations is when you divide one by another:

nCk

nPk
=

1
k!

nPk

nCk
= k!
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Problem Set 2.2.10

1. 5P3 =

2. 5C3 =

3. 6C3 =

4. 7C4 =

5. 7P4 =

6. 6P2 =

7. 8C6 =

8. 5C2 =

9. 8P3 =

10. 8C3 =

11. 9C2 =

12. 4P2 ÷4 C2 =

13. 6P3 ÷6 C3 =

14. 7P4 ÷7 C3 =

15. 8C5 ÷8 P5 =

16. 9P3 ÷9 C3 =

17. 4P3 ÷3 P2 =

18. 4C3 ×3 C2 =

19. 5P3 ×4 P2 =

20. 6C3 ÷6 P3 =

21. 6C1 +4 P1 =

22. (5C2)(5P2) =

2.2.11 Trigonometric Values

Trigonometry problems have been increasingly popular for writers of the number sense test. Not only are
they testing the basics of sines, cosines, and tangents of special angles (30◦, 45◦, 60◦, 90◦, and variations in
each quadrant) but also the trigonometric reciprocals (cosecant, secant, and cotangent).

First, let’s look at the special angles in the first quadrant where all values of the trigonometric functions
are positive. In the table, each trigonometric function is paired below with it’s reciprocal:
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Trig Function 0◦ 30◦ 45◦ 60◦ 90◦

sin 0 1
2

√
2

2

√
3

2 1

csc Undefined 2
√

2
√

3·2
3 1

cos 1
√

3
2

√
2

2
1
2 0

sec 1
√

3·2
3

√
2 2 Undefined

tan 0
√

3
3 1

√
3 Undefined

cot Undefined
√

3 1
√

3
3 0

All of those can be derived using the memorable “SOHCAHTOA” technique to special right triangles (it is
assumes that one can do this, so it is omitted in this text. If help is needed, see any elementary geometry
book.). In addition, it is clear that the values at the reciprocal trigonometric function is just the multiplica-
tive inverse (that’s why they are called reciprocal trigonometric functions!).

Now to find the values of trigonometric functions in any quadrant it is essential to remember two things.
The first is you need to get the sign straight of the values depending on what quadrant you are in. The
following plot and mnemonic device will help with getting the sign correct:

|

Sin | All

II | I

- - - - - -

|

Tan | Cos

III | IV

The above corresponds to which trigonometric functions (and their reciprocals) are positive in which quad-
rants. Now if you forget this, you can take the first letter of each function in their respected quadrants
and remember the mnemonic device of “All Students Take Calculus” to remember where each function is
positive.

The second challenge to overcome in computing each Trigonometric Function at any angle is to learn how to
reference each angle to its first quadrant angle, so that the chart above could be used. The following chart
will help you find the appropriate reference angle depending on what quadrant you are in. Assume that you
are given an angle θ which resides in each of the quadrants mentioned. The following would be it’s reference
angle:

Quadrant I Quadrant II Quadrant III Quadrant IV

Reference Angle: θ 180◦ − θ θ − 180◦ 360◦ − θ
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So now we have enough information to compute any trigonometric function at any angle. Let’s look at
a couple of problems:

Problem: sin(210◦)
Solution: Now you know the angle is in Quadrant-III, so the result will be negative (only cosine is positive
in Q-III). Now to find the reference angle is is just θ − 180◦ = 210◦ − 180◦ = 30◦. So the sin(30◦) from the
table is 1

2 so the answer is: sin(210◦) = −1
2 .

Problem: cot(135◦)
Solution: So the cot/tan function is negative in Q-II. To find the reference angle, it is simply 180◦ − θ =
180◦ − 135◦ = 45◦. Now the cot(45◦) = 1 (from the table) so the answer is: cot(135◦) = −1 .

Problem: cos(−30◦)
Solution: So an angle of −30◦ = 330◦ which is in Q-IV where cosine is positive. Now to find the reference
angle you just do 360◦ − θ = 360◦ − 330◦ = 30◦, and cos(30◦) =

√
3

2 . So the answer is just cos(−30◦) =
√

3
2 .

It should be noted that all of these problems have been working with degrees. Students should familiarize
themselves with using radians as well using the conversion rate of: π = 180◦. So an angle (given in radians)
of π

6 = 180◦
6 = 30◦.

It is great for all students to practice solving these types of problems. The following are some practice
problems. If more are needed, just consult any elementary geometric textbook or pre-calculus textbook.

Problem Set 2.2.11

1. sin(−30◦) =

2. cos θ = .375 then sec θ =

3. sin(3π) =

4. tan(225◦) =

5. sin(sin−1 1
2
) =

6. sin θ = −.1 then csc θ =

7. sin
11π

6
=

8. cos(−5π) =

9.
π

18
= ◦

10. cos(sec−1 3) =

11.
5π

8
= ◦

12.
π

5
= ◦

13. cos(sin−1 1) =

14. tan(−45◦) =

15. sin(−π) =

16. cos(−300◦) =

17. sin−1(sin 1) =

18. csc(−150◦) =
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19. sec(120◦) =

20. tan(−225◦) =

21.
3π

5
= ◦

22. tan(−45◦) =

23. tan(315◦) =

24. If 0◦ < x < 90◦ and tan x = cot x, x =

25. 280◦ = kπ then k =

26. tan
5π

4
=

27. cos θ = .08333 . . . then sec θ =

28. sin(5π) + cos(5π) =

29. sec(60◦) =

30. 12◦ =
π

k
, k =

31. cos θ = −.25 then sec θ =

32. tan2 60◦ =

33. 1.25π = ◦

34. cot2 60◦ =

35. sin[cos−1

(√
2

2

)
] =

36. cos(−3π)− sin(−3π) =

37. cos(
−4π

3
) + sin(

−5π

6
) =

38. 2 sin 120◦ cos 30◦ =

39. cos(240◦)− sin(150◦) =

40. sin(cos−1

√
3

2
) =

41. sin(cos−1 1) =

42. If csc θ = −3, where 270◦ < θ < 300◦, then
sin θ =

43. sin(
−7π

6
)− cos(

−2π

3
) =

44. sec θ = −3, θ is in QIII, then cos θ =

45. cos
5π

6
× sin

2π

3
=

46. sin
3π

4
× cos

5π

4
=

47. sin 30◦ + cos 60◦ = tan x
0◦ ≤ x ≤ 90◦, x =

48. cos

(
sin−1

√
3

2

)
=

49. sin(
−π

3
)× sin(

π

3
) =

50. cos(120◦)× cos(120◦) =

51. 216◦ = kπ, k =

52. cos(
−2π

3
)× cos(

4π
3

) =

53. tan(30◦)× cot(60◦) =

54. cos(
−π

3
)× cos(

π

3
) =

55. sin
π

6
+ cos

π

3
= tan

π

k
then k =

56. cos−1 .8 + cos−1 .6 = kπ then k =

57. sin(300◦)× cos(330◦) =

58. sin(
−π

6
)× cos(

π

3
) =

59. 630◦ = kπ, k =
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2.2.12 Trigonometric Formulas

Recently, questions involving trigonometric functions have encompassed some basic trigonometric identities.
The most popular ones tested are included here:

The Fundamental Identity

sin2 +cos2 = 1 with subsequent variants:
1 + cot2 = csc2

tan2 +1 = sec2

Sum to Difference Formulas

sin(a± b) = sin(a) cos(b)± sin(b) cos(a)
cos(a± b) = cos(a)cos(b)∓ sin(a) sin(b)

Double Angle Formulas

sin(2a) = 2 sin(a) cos(a)
cos(2a) = cos2(a)− sin2(a) with variants:
cos(2a) = 1− 2 sin2(a)
cos(2a) = 2 cos2(a)− 1

Sine → Cosine

sin(90◦ − θ) = cos(θ)

Most of the time, using trigonometric identities will not only aid in speed but will also be necessary. Take
for example this example:

sin(10◦) cos(20◦) + sin(20◦) cos(10◦)

With out using the sum to difference formula, this would be impossible to calculate, however after using the
formula you get:

sin(10◦) cos(20◦) + sin(20◦) cos(10◦) = sin(10◦ + 20◦) = sin(30◦) = 1
2

The following are some practice problems using these identities:

Problem Set 2.2.12

1. cos2 30◦ + sin2 30◦ =

2. cos2 30◦ − sin2 30◦ =

3. 2 sin 15◦ cos 15◦ =

4. 2 sin 30◦ sin 30◦ − 1 =

5. 1− sin2 30◦ =

6. cos 22◦ = sin θ, 0◦ < θ < 90◦, θ =

7. [2 sin
π

3
cos

π

3
]2 =
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8. 2 sin 15◦ cos 15◦ − 1 =

9. 3 csc2 45◦ − 3 cot2 45◦ =

10. cos2 30◦ − sin2 30◦ =

11. sin105◦ cos105◦ =

12. sin 38◦ = cos θ, 270◦ < θ < 360◦, θ =

13. sin 30◦ cos 60◦ − sin 60◦ cos 30◦ =

14. 2 cos2
π

6
− 1 =

15. (1− sin 60◦)(1 + sin 60◦) =

16. 2 sin 15◦ sin 75◦ =

17. (sin
π

3
− cos

π

3
)(sin

π

3
+ cos

π

3
) =

18. If sin(A) =
3
5
, then cos(2A) =

19. 1− 2 sin2 π

6
=

20. cos 75◦ sin 75◦ =

21. sin 15◦ cos 45◦ − sin 45◦ cos 15◦ =

22. 2− 4 sin2 30◦ =

23. cos95◦ cos25◦ − sin95◦ sin25◦ =

24. sin
π

6
+ cos

π

3
=

25. cos 15◦ sin 45◦ − cos 45◦ sin 15◦ =

26. (sin
π

6
− cos

π

6
)(sin

π

6
+ cos

π

6
) =

27. 2 tan2 θ − 2 sec2 θ =

2.2.13 Graphs of Sines/Cosines

Popular questions for the last column involve determining amplitudes, periods, phase shifts, and vertical
shifts for plots of sines/cosines. If you haven’t been introduced this in a pre-calculus class, use the following
as a rough primer:

The general equation for any sine/cosine plot is:

y = A sin[B(x− C)] + D

Amplitude: |A|

Period:
2π

B

Phase Shift: C

Vertical Shift: D (Up if > 0, Down if < 0)

Example: Find the period of y = 3 sin(πx− 2) + 8.
Solution: We need the coefficient in front of x to be 1, so we need to factor out π, making the graph:

y = 3 sin[π(x − 2
π )] + 8. Now we can apply the above table to see that the period=

2π

π
= 2. The other

characteristics of the graph is that the amplitude= 3, the phase shift=
2
π

, and it is vertically shifted by 8 units.
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Here are some more practice problems:

Problem Set 2.2.13

1. What is the amplitude of y = 4 cos(2x) + 1:

2. The graph of y = 2− 3 cos[2(x− 5)] has a
horizontal displacement of:

3. The graph of y = 2− 2 cos[3(x− 5)] has a
vertical shift of:

4. The amplitude of y = 2− 3 cos[4(x + 5)] is:

5. The period of y = 5 cos[
1
4
(x + 3π)] + 2 is

kπ, k =

6. The phase shift of y = 5 cos[4(x + 3)]− 2 is:

7. The amplitude of y = 2− 5 cos[4(x− 3)] is:

8. The vertical displacement of y = 5 cos[4(x +
3)]− 2 is:

9. The phase shift of f(x) = 2 sin(3x− π

2
) is

kπ, k =

10. The period of y = 2− 3 cos(4πx + 2π) is:

11. The period of y = 2 + 3 sin(
x

5
) is:

12. The graph of y = 1− 2 cos(3x + 4) has an
amplitude of:

2.2.14 Vertex of a Parabola

This question was much more popular on tests from the 90’s, but it is being resurrected on some of the more
recent tests. When approached with a parabola in the form of f(x) = Ax2 + Bx + x, the coordinate of the
vertex is:
(h, k) = (−B

2A , f
(−B

2A

)
).

Example: Find the y-coordinate of the vertex of the parabola who’s equation is y = 3x2 − 12x + 16.

Solution: x =
−(−12)

2 · 3 = 2 ⇒ y = 3 · 22 − 12 · 2 + 16 = 4.

It should be noted that if the parabola is in the form x = ay2 + by + c, then the vertex is:
(h, k) = (f

(−b
2a

)
, −b

2a ). (due to a rotation of axis).

The following are some practice problems:

Problem Set 2.2.14

1. The vertex of the parabola y = 2x2 + 8x− 1
is (h, k), k =

2. The vertex of y = x2 − 2x− 4 is (h, k), k =

3. If g(x) = 2− x− x2, then the axis of
symmetry is x =
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2.2.15 Discriminant and Roots

A very popular question is, when given a quadratic equation, determining the value of an undefine coefficient
so that the roots are distinct/equal/complex. Take the following question:

Find the value for k such that the quadratic 3x2 − x− 2k = 0 has equal roots.

Well we know from the quadratic equation that the roots of a general polynomial ax2 + bx + c = 0 can be
determined from:

r1,2 =
−b±√b2 − 4ac

2a

So we know from this that:

Distinct Roots: b2 − 4ac > 0

Equal Roots: b2 − 4ac = 0

Complex Conjugate Roots: b2 − 4ac < 0

So in our case we need to find the value of k such that the discriminant (b2 − 4ac) is equal to zero.

b2 − 4ac = 12 − 4 · 3 · (−2k) = 0 ⇒ k =
−1

4 · 3 · 2 =
−1
24

The following are some more practice problems:

Problem Set 2.2.15

1. For 2x2 − 4x− k = 0 to have 2 equal
roots, the smallest value of k is:

2. For 3x2 − x− 2k = 0 to have equal roots
k has to be:

3. For 3x2 − 2x + 1− k = 0 to have equal
roots, k has to be:

4. The discriminant of 2x2 − 3x = 1 is:

5. For what value of k does 3x2 + 4x + k = 0
have equal roots:

6. For x2 − 2x− 3k = 0 to have one real solution
k has to be:
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3 Miscellaneous Topics

3.1 Random Assortment of Problems

3.1.1 GCD/GCF and LCM

How finding the Greatest Common Divisor (or GCD) is taught in classes usually involves prime factorizing
the two numbers and then comparing powers of exponents. However, this is not the most efficient way of
doing it during a number sense competition. One of the quickest way of doing it is by employing Euclid’s
Algorithm who’s method won’t be proven here (if explanation is necessary, just google to find the proof).
The following outlines the procedure:

1. Arrange the numbers so that n1 < n2 then find the remainder when n2 is divided by n1 and call it r1.

2. Now divide n1 by r1 and get a remainder of r2.

3. Continue the procedure until any of the remainders are 0 and the number you are dividing by is the
GCD or when you notice what the GCD of any pair of numbers is.

Let’s illustrate with an example:

GCD(36, 60) = Well, when 60 is divided by 36 it leaves a remainder of 24. So:
GCD(36, 60) = GCD(24, 36). Continuing the procedure, when 36 is divided by 24 it leaves a remainder of
12. So:
GCD(36, 60) = GCD(24, 36) = GCD(12, 24) Which from here you can tell the GCD is 12. You could also
have stopped after the first step when you notice that the GCD(24, 36) is 12, and you wouldn’t have to
continue the procedure.

Here is another example:

GCD(108, 140) = GCD(32, 108) = GCD(12, 32) = GCD(8, 12) = GCD(4, 8) = 4
If at any point in that process you notice what the GCD of the two numbers is by observation, you can cut
down on the amount of steps in computation.

For computing the LCM between two numbers a and b, I use the formula:

LCM(a, b) =
a× b

GCD(a.b)

So to find what the LCM is, we must first compute the GCD. Using a prior example, let’s calculate the
LCM(36,60):

LCM(36, 60) =
36× 60

12
= 3× 60 = 180

The procedure is simple enough, let’s do one more example by finding the LCM of 44 and 84:
GCD(44, 84) = GCD(40, 44) = GCD(4, 40) = 4 therefore

LCM(44, 84) =
44× 84

4
= 11× 84 = 924

It should be noted that there are some questions concerning the GCD of more than two numbers (usually
not ever more than three). The following outlines the procedure which should be followed:

1. Find the GCD of two of the numbers.

2. Find the LCM of those two numbers by using the GCD and the above formula.

3. Calculate the GCD of the LCM of those two numbers and the third number.
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It should be noted that usually one of the numbers is a multiple of another, thus leaving less required cal-
culations (because the LCM between two numbers which are multiples of each other is just the larger of the
two numbers).

The following are some more practice problems for finding GCDs and LCMs using this method:

Problem Set 3.1.1

1. The GCF of 35 and 63 is:

2. The LCM of 64 and 20 is:

3. The LCM of 27 and 36 is:

4. The GCF of 48 and 72 is:

5. The GCD of 27 and 36 is:

6. The LCM of 63 and 45 is:

7. The GCD of 132 and 156 is:

8. The LCM of 57 and 95 is:

9. The GCD of 52 and 91 is:

10. The LCM of 52 and 28 is:

11. The GCD of 48 and 54 is:

12. The GCD of 54 and 36 is:

13. The LCM of 27 and 36 is:

14. The LCM of 108 and 81 is:

15. The GCD of 28 and 52 is:

16. The LCM of 51 and 34 is:

17. The LCM of 23 × 32 and 22 × 33 is:

18. The LCM of 28 and 42 is:

19. The LCM of 54 and 48 is:

20. The GCF of 84 and 70 is:

21. The GCF of 132 and 187 is:

22. The LCM of 48 and 72 is:

23. The GCF of 51, 68, and 85 is:

24. The GCF(24,44)-LCM(24,44)=

25. The LCM of 16, 20, and 32 is:

26. The GCD(15,28) times LCM(15,28) is:

27. The LCM of 12, 18, and 20 is:

28. The LCM of 14, 21, and 42 is:

29. The LCM of 8, 18, and 32 is:

30. The GCD(15,21)+LCM(15,21)=

31. The GCF of 44, 66, and 88 is:

32. The product of the GCF and LCM of
21 and 33 is:

33. The LCM of 16, 32, and 48 is:

34. The GCD(18,33)+LCM(18,33)=
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35. The LCM of 14, 28, and 48 is:

36. The LCM(21,84)-GCF(21,84)=

37. The LCM of 24, 36, and 48 is:

38. The GCD(16,20)-LCM(16,20)=

39. The GCF of 42, 28, and 56 is:

40. The product of the GCF and LCM of
24 and 30 is:

41. The LCM of 36, 24, and 20 is:

42. The LCM of 28,42, and 56 is:

3.1.2 Perfect, Abundant, and Deficient Numbers

For this section let’s begin with the definitions of each type.

A perfect number has the sum of the proper divisors equal to itself. The first three perfect numbers are 6
(1+2+3 = 6), 28 (1+2+4+7+14 = 28), and 496 (1+2+4+8+16+31+62+124+248 = 496). Notice
that there are really only two perfect numbers that would be reasonable to test on a number sense test (6
and 28 should be memorized as being perfect).

An abundant number has the sum of the proper divisors greater than itself. Examples of an abundant
number is 12 (1 + 2 + 3 + 4 + 6 = 16 > 12) and 18 (1 + 2 + 3 + 6 + 9 = 21 > 18). An interesting property of
abundant numbers is that any multiple of a perfect or abundant number is abundant. Knowing this is very
beneficial to the number sense test.

As you can assume through the process of elimination, a deficient number has the sum of the proper divisors
less than itself. Examples of these include any prime number (because they have only one proper divisor
which is 1), 10 (1+2+5 = 8 < 10), and 14 (1+2+7 = 10 < 14) just to name a few. An interesting property
is that any power of a prime is deficient (this is often tested on the number sense test).

3.1.3 Sum and Product of Coefficients in Binomial Expansion

From the binomial expansion we know that:

(ax + by)n =
n∑

k=0

(
n

k

)
(ax)n−k(by)k

=
(

n

0

)
an · xn +

(
n

1

)
an−1b1 · xn−1y1 + · · ·

(
n

n

)
bnyn

From here we can see that the sum of the coefficients of the expansion is:

n∑

k=0

(
n

k

)
an−kbk

Where we can retrieve these sums by setting x = 1 and y = 1.
So the Sum of the coefficients is just (a + b)n!

Here is an example to clear things up:
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Example: Find the Sum of the Coefficients of (x + y)6.
Solution: Well let x = 1 and y = 1 which lead to the Sum of the Coefficients = (1 + 1)6 = 64.

An interesting side note on this is when asked to find the Sum of the Coefficients of (x− y)n it will always
be 0 because by letting x = 1 and y = 1 you get the Sum of the Coefficients = (1− 1)n = 0.

As for the product of the coefficients, there are no easy way to compute them. The best method is to
memorize some of the first entries of the Pascal triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Here are some more practice to get acquainted with both the sum and product of coefficients:

Problem Set 3.1.3

1. The sum of the coefficients in the
expansion of (5x− 9y)3 is:

2. The sum of the coefficients in the
expansion of (5x + 7y)3 is:

3. The sum of the coefficients in the
expansion of (x− y)3 is:

4. The sum of the coefficients in the
expansion of (a + b)3 is:

5. The sum of the coefficients in the
expansion of (x + y)6 is:

6. The sum of the coefficients in the
expansion of (x + y)2 is:

7. The sum of the coefficients in the
expansion of (a + b)5 is:

8. The sum of the coefficients in the
expansion of (a− b)4 is:

9. The sum of the coefficients in the
expansion of (3x− y)4 is:

10. The product of all the coefficients in
the expansion (x + y)4 is:

11. The product of the coefficients in
the expansion of (2a + 2b)2 is:

12. The product of the coefficients in
the expansion of (a + b)3 is:

13. The product of the coefficients in
the expansion of (a− b)4 is:

14. The product of the coefficients in
the expansion of (3a + 3b)2 is:

15. The product of the coefficients in
the expansion of (a + b)5 is:

16. The product of the coefficients in
the expansion of (a− b)2 is:
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17. The product of the coefficients in
the expansion of (4a− 3b)2 is:

18. The sum of the coefficients in
the expansion of (x2 − 6x + 9)2 is:

19. The product of the coefficients in
the expansion of (4x + 5)2 is:

3.1.4 Sum/Product of the Roots

Define a polynomial by pn = anxn + an−1x
n−1 + an−2x

n−2 · · · a1x
1 + a0 = 0. The three most popular

questions associated with the number sense test concerning roots of polynomials are: sum of the roots, sum
of the roots taken two at a time, and product of the roots. For the polynomial pn these values are defined
by:

Sum of the roots:
−an−1

an

Sum of the roots taken two at a time:
an−2

an

Product of the roots: If n is even
a0

an

If n is odd
−a0

an

Let’s see what this means for our generic quadratics/cubics: p2 = ax2+bx+c = 0 and p3 = ax3+bx2+cx = 0

p2 = ax2 + bx + c = 0

Sum of the roots:
−b

a

Product of the roots:
c

a

p3 = ax3 + bx2 + cx = 0

Sum of the roots:
−b

a

Product of the roots taken two at a time:
c

a

Product of the roots:
−d

a

Since the quadratic only has two roots, the sum of the roots taken two at a time happens to be the product of
the roots. You can extend the same procedure for polynomials of any degree, keeping in mind the alternating
signs for the product of the roots. The following are practice problems:

Problem Set 3.1.4

1. The sum of the roots of
2x2 − 3x + 1 = 0 is:

2. The sum of the roots of
(x− 4)(x− 5) = 0 is:

3. The sum of the roots of
3x3 − 2x2 + x− 4 = 0 is:

4. The product of the roots of
x2 + 3x = 7 is:
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5. The sum of the roots of
x2 − 9 = 0 is:

6. The sum of the roots of
4x2 + 3x = 2 is:

7. The sum of the roots of
(2x− 3)2 = 0 is:

8. The product of the roots of
5x3 − 8x2 + 2x + 3 = 0 is:

9. The product of the roots of
4x3 − 3x2 + 2x− 1 = 0 is:

10. The sum of the roots of
3x3 + 2x2 = 9 is:

11. The sum of the roots of
x3 − 13x = 12 is:

12. Let R,S,T be the roots of 2x3 + 4x = 5.
Then R× S × T =

13. The product of the roots of
5x3 + 4x− 3 = 0 is:

14. The sum of the roots of
(3x− 2)(2x + 1) = 0 is:

15. The sum of the product of the roots taken two
at a time of 2x3 + 4x2 − 6x = 8 is:

16. The sum of the roots of
2x3 + 4x2 − 3x + 5 = 0 is:

17. The product of the roots of
(2x− 1)(3x + 2)(4x− 3) = 0 is:

18. Let R,S,T be the roots of 2x3 + 4x = 5.
Then RS + RT + ST =

19. The equation 2x3 − bx2 + cx = d has
roots r,s,t and rst=3.5, then d =

20. The sum of the roots of
3x2 − bx + c = 0 is −12 then b =

21. If r,s,and tare the roots of the equation
2x3 − 4x2 + 6x = 8 then rs + rt + st =

22. The sum of the roots of
4x3 + 3x2 − 2x− 1 = 0 is:

23. The product of the roots of
4x3 − 3x2 + 2x + 1 = 0 is:

24. The sum of the roots of
5x3 + 4x− 3 = 0 is:

25. The equation 2x3 − bx2 + cx = d has roots
r,s,t
If r + s + t = −2 then b =

3.1.5 Finding Units Digit of xn

This is a common problem on the number sense test which seems considerably difficult, however there is a
shortcut method. Without delving too much into the modular arithmetic required, you can think of this
problem as exploiting patterns. For example, let’s find the units digit of 347, knowing:

99



31 3 Units Digit: 3

32 9 Units Digit: 9

33 27 Units Digit: 7

34 81 Units Digit: 1

35 243 Units Digit: 3

36 729 Units Digit: 9

37 2187 Units Digit: 7

38 6561 Units Digit: 1

From this you can see it repeats every 4th power.

So in order to see what is the units digit you can divide the power in question by 4 then see what the
remainder r is. Then to find the appropriate units digit, you look at the units digit of 3r. For example, the
units digit for 35 could be found by saying 5 ÷ 4 has a remainder of 1 so, the units digit of 35 corresponds
to that of 31 which is 3. So to reiterate, the procedure is:

1. For low values of n, compute what the units digit of xn is.

2. Find out how many unique integers there are before repetition (call it m).

3. Find the remainder when dividing the large n value of interest by m (call it r)

4. Find the units digit of xr, and that’s your answer.

So for our example of 347:
47÷ 4 has a remainder of 3

33 has the units digit of 7

Other popular numbers of interest are:

Numbers Repeating Units Digits Number of Unique Digits

Anything ending in 2 2, 4, 8, 6 4

Anything ending in 3 3, 9, 7, 1 4

Anything ending in 4 4, 6 2

Anything ending in 5 5 1

Anything ending in 6 6 1

Anything ending in 7 7, 9, 3, 1 4

Anything ending in 8 8, 4, 2, 6 4

Anything ending in 9 9, 1 2
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Using the above table, we can calculate the units digit of any number raised to any power relatively simple.
To show this, find the units digit of 2763:

From the table, we know it repeats every 4th power, so: 63÷ 4 ⇒ r = 3

r = 3 corresponds to 73 which ends in a 3

This procedure is also helpful with raising the imaginary number i to any power. Remember from Algebra:

i1 i

i2 −1

i3 −i

i4 1

i5 i

i6 −1

i7 −i

i8 1

So, after noticing that it repeats after every 4th power, we can compute for example i114.

114÷ 4 has a remainder of 2 ⇒ i2 = −1

The following are examples of these types of problems:

Problem Set 3.1.5

1. Find the units digit of 197:

2. Find the units digit of 176:

3. Find the units digit of 88:

4. Find the units digit of 77:

5. Find the units digit of 1313:

6. Find the units digit of 175:

7. i78 =

8. i66 =

9. Find the units digit of 165:

3.1.6 Exponent Rules

These problems are usually on the third column, and if you know the basics of exponential rules they are
easy to figure out. The rules to remember are as followed:
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xa · xb = xa+b xa

xb
= xa−b (xa)b = xab

The following are problems concerning each type:

Product Rule: Let 3x = 70.1, then 3x+2 =?
Solution: 3x+2 = 3x · 32 = 70.1 · 9 = 630.9

Quotient Rule: Let 5x = 2, represent 5x−2 as a decimal.

Solution: 5x−2 =
5x

52
=

2
25

= .08

Power Rule: Let 4x = 1.1 then 26x =?
Solution: 4x = 22x = 1.1 ⇒ 26x =

(
22x

)3 = 1.13 = 1.331

The following are some more problems about exponent rules:

Problem Set 3.1.6

1. 6x = 34, then 6x+2 =

2. 3x = 70.1, then 3x+2 =

3. 4x+1 = 2, then 4x−1 =

4. 6x = 72, then 6x−2 =

5. 7x = 14, then 7x−2 =

6. 4x = .125, then 42x =

7. 8x = 17, then 82x =

8. 2x = 14.6, then 2x+1 =

9. 4x = 32, then x =

10. 9x = 108, then 32x+1 =

11. 62x = 36, then 63x =

12. 8x = 256, then x =

13. 27x = 81, x =

14. 28 ÷ 43 has a remainder of:

15. 9x = 27x+2, x =

16. n4 = 49, then n6 =

17. 16x = 169, then 4x =

18. 53x = 252+x, x =

19. n6 = 1728, then n4 =

20. 4x ÷ 16x = 4−2, x =

21.
√

a5 × 5
√

a2 = n
√

a29, n =

22. 68 ÷ 8 has a remainder of:

23. 3
√

a4 + 4
√

a3 = 12
√

an,n =
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3.1.7 Log Rules

Logarithms are usually tested on the third and fourth columns of the test, however, if logarithm rules are
fully understood these can be some of the simplest problems on the test. The following is a collection of log
rules which are actively tested:

Definition: loga b = x ax = b

Power Rule: loga bn n loga b

Addition of Logs: loga b + loga c loga(bc)

Subtraction of Logs: loga b− loga c loga( b
c )

Change of Bases: loga b
log b

log a

In the above table log10 a is represented as log a. The following are some sample problems illustrating
how each one of the rules might be tested:

Example: Find log4 .0625.
Solution: Applying the definition we know that 4x = .0625 = 1

16 . Therefore, our answer is x = −2

Example: Find log8 16.
Solution: Again, applying the definition, 8x = 16, which can be changed to 23x = 24 ⇒ x = 4

3 .

Example: Find log12 16 + log1236− log124.
Solution: We know from the addition/subtraction of logs that the above expression can be written as
log12

16·36
4 = log12 16 · 9 = log12 144 ⇒ 12x = 144 ⇒ x = 2.

Example: Find log5 8÷ log25 16
Solution: These are probably the most challenging logarithm problems you will see on the exam. They
involved changing bases and performing the power rule. Let’s look at what happens when we change bases:

log5 8÷ log25 16 =
log 8
log 5

÷ log 16
log 25

=
log 23

log 5
× log 52

log 24
=

3 · log 2
log 5

× 2 · log 5
4 · log 2

= 3× 1
2

=
3
2

.

In addition to the above problems, there are some approximations of logarithms which pop up. For those,
there are some quantities which would be nice to have memorized to compute a more accurate approxima-
tions. Those are:

log10 2 ≈ .3 log10 5 ≈ .7

ln 2 ≈ .7 ln 10 ≈ 2.3

Where lnx = loge x.

The following is example of how approximations of logs can be calculated:

200 log 200 = 200 log(2 · 100) = 200 · (log 2 + log 100) ≈ 200 · (.3 + 2) = 460

The following are some more practice problems:
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Problem Set 3.1.7

1. −2 log3 x = 4, x =

2. log12 2 + log12 8 + log12 9 =

3. log3 40− log3 8 + log3 1.8 =

4. logx 216 = 3, x =

5. f(x) = log3 x− 4, f(3) =

6. log8 16 =

7. log3 x = 4,
√

x =

8. logx 343 = 3, x =

9. If log .25 = 3, then log 4 =

10. (log5 6)(log6 5) =

11. log3 216÷ log3 6 =

12. log3 32− log3 16 + log3 1.5 =

13. log2 64÷ log2 4 =

14. log4 32 + log4 2− log4 16 =

15. log5 625× log5 25÷ log5 125 =

16. log4 8× log8 4 =

17. log4 256÷ log4 16× log4 64 =

18. log8 k =
1
3
, k =

19. log5 M = 2,
√

M =

20. 4 log9 k = 2, k =

21. log4 8 = N then 2N =

22. log9 3 = W then 3W =

23. logk 32 = 5, k =

24. log3[log2(log2 256)] =

25. log4 .5 = k, k =

26. log5[log4(log3 81)] =

27. log16 8 = w, w =

28. log9 k = 2.5, k =

29. log2[log3(log2 512)] =

30. logb .5 = −.5, b =

31. logb 8 = 3, b =

32. log3[log4(log5 625)] =

33. log4 8 = k, k =

34. log4[log3(log5 125)] =

35. log4 .125 = k, k =

36. log8(3x− 2) = 2, x =

37. log4[log2(log6 36)] =

38. log4 x = 3,
√

x =

39. log5 x2 = 4,
√

x =
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40. (*) 300 log 600 =

41. log4 x = −.5, x =

42. 3 log2 x = 6,
√

x =

43. log2 x = 9, 3
√

x =

44. logx 64 = 3, x−2 =

45. log9 x = 2,
√

x =

46. logk 1728 = 3, k =

47. log4 x = 3,
√

x =

48. log2(log10 100) =

49. logx 64 = 1.5, x =

50. log8(log4 16) =

51. log9(log3 27) =

3.1.8 Square Root Problems

A common question involves the multiplication of two square roots together to solve for (usually) an integer
value. For example:

√
12×

√
27 =

√
12×

√
3×

√
9

=
√

36×
√

9
= 6× 3 = 18

Usually the best approach is to figure out what you can take away from one of the square roots and
multiply the other one by it. So from the above example, notice that we can take a 3 away from the 37 to
multiply the 12 with, leading to just

√
36×√9 which are easy square roots to calculate. With this method,

there are really no “tricks” involved, just a procedure that should be practiced in order to master it. The
following are some more problems:

Problem Set 3.1.8

1.
√

75×√27 =

2.
√

75×√48 =

3.
√

44×√99 =

4.
√

39×√156 =

5.
√

27×√48 =

6.
√

98× 8 =

7.
√

44× 11 =

8.
√

96× 24 =

9.
√

72× 18 = =

10.
√

45÷√80 =

11.
√

28÷√63 =

12. 3
√

125× 512 =
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3.1.9 Finding Approximations of Square Roots

Seeing a problem like approximating
√

1234567 is very common in the middle of the test. The basic trick is
you want to “take out” factors of 100 under the radical. Let’s look at the above example after noticing that
we can roughly approximate (within the margin of error)

√
1234567 ≈ √

1230000. Now:

√
1230000 =

√
123 · 100 · 100 = 10 · 10

√
123

Now we are left with a much simpler approximation of the 100 · √123 ≈ 100 · 11 = 1100.

You can follow the same procedure for cubed roots as well, only you need to find factors of 1000 under
the radical to take out. Let’s look at the example of 3

√
1795953 after making the early approximation of

3
√

1795953 ≈ 3
√

1795000

3
√

1795000 = 3
√

1795 · 1000 = 10 · 3
√

1795
Well we should have memorized that 123 = 1728 so we can form a rough approximation:

10 · 3
√

1795 = 10 · 12.1 = 121

So the trick is if you are approximating the nth root of some number, you “factor out” sets of the n-digits
and then approximate a much smaller value, then move the decimal place over accordingly.

Now in some instances you are asked to find the exact value of the cubed root. For example: 3
√

830584.
Now the procedure would be as followed:

1. Figure out how many digits you are going to have by noticing how many three-digit “sets” there are.
Most will only be two digit numbers, however this is not guaranteed.

2. To find out the units digit, look at the units digit of the number given and think about what number
cubed would give that result.

3. After that, you want to disregard the last three digits, and look at the remaining number and find out
what number cubed is the first integer less than that value.

So to use the procedure give above for the problem of 3
√

830584:

1. Well you have two, three-digit “sets” (the sets being 584 and 830). This means that we are looking for
a two-digit number in our answer.

2. The last digit is 4, so what number cubed ends in a 4? The answer is that 43 = 64 so the last digit of
the answer is 4.

3. Now we disregard the first set of three (584) and look at the remaining numbers (830). So what number
cubed is less than 830. Well we know 103 = 1000 and 93 = 729 so 9 is the largest integer so that when
cubed is less than 830. So that is the tens digit.

4. The answer is 94.

The following are problems so that you can practice this procedure of finding approximate and exact values
of square and cubed roots.

Problem Set 3.1.9
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1. (*)
√

15376 =

2. 3
√

830584 =

3. (*)
√

23456 =

4. (*)
√

32905 =

5. (*)
√

6543210 =

6. 3
√

658503 =

7. (*)
√

6213457 =

8. (*)
√

173468 =

9. (*)
√

6420135 =

10. (*)
√

872143 =

11. (*)
√

272727 =

12. (*)
√

38527 =

13. (*)
√

32323 =

14. (*)
√

18220 =

15. (*)
√

25252 =

16. (*)
√

265278 =

17. (*)
√

81818 =

18. (*)
√

262626 =

19. (*)
√

765432 =

20. (*)
√

80808 =

21. (*)
√

97531 =

22. (*)
√

86420 =

23. (*)
√

8844×√6633 =

24. (*) 3
√

217777×√3777× 57 =

25. (*) 3
√

26789×√911× 31 =

26. (*) 3
√

215346×√3690× 57 =

27. (*) 3
√

2006× 6002 =

28. (*) 3
√

63489×√1611× 41 =

29. (*) 4
√

14643× 3
√

1329×√120 =

3.1.10 Complex Numbers

The following is a review of Algebra-I concerning complex numbers. Recall that i =
√−1. Here are impor-

tant definitions concerning the imaginary number a + bi:

Complex Conjugate: a− bi

Complex Modulus:
√

a2 + b2

Complex Argument: arctan
b

a
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The only questions that are usually asked on the number sense test is multiplying two complex numbers
and rationalizing a complex number. Let’s look at examples of both:

Multiplication: (a + bi) · (c + di) = (ac− bd) + (ad + bc)i

Example: (3− 2i) · (4 + i) = a + bi, a + b =?
Solution: a = 3 · 4 + 2 · 1 = 14 and b = 3 · 1 + (−2) · 4 = −5. So a + b = 14− 5 = 9.

Rationalizing: (a + bi)−1 =
a− bi

a2 + b2

Example: (3− 4i)−1 = a + bi, a− b =?

Solution: (3− 4i)−1 =
3 + 4i

32 + 42
⇒ a =

3
25

and b =
4
25

. So a− b =
3
25
− 4

25
= − 1

25
.

The following are some more practice problems about Complex Numbers:

Problem Set 3.1.10

1. (4− i)2 = a + bi, a =

2. (6− 5i)(6 + 5i) =

3. The conjugate of (4i− 6) is
a + bi, a =

4. (5 + i)2 = a + bi, a =

5. (9− 3i)(3 + 9i) = a + bi, a =

6. (8 + 3i)(3− 8i) = a + bi, a =

7. (2 + 3i)÷ (2i) = a + bi, a =

8. (3− 4i)(3 + 4i) =

9. (24− 32i)(24 + 32i) =

10. (5 + 12i)2 = a + bi, a + b =

11. (3− 5i)(2− 5i) = a + bi, a + b =

12. (2− 5i)(3 + 5i) = a + bi, a =

13. (2− 5i)(3− 4i) = a + bi, a− b =

14. (4− 3i)(2− i) = a + bi, a− b =

15. (2 + 7i)(2− 7i) = a + bi, a− b =

16. (2 + 3i)(4 + 5i) = a + bi, a =

17. (3 + 4i)2 = a + bi, a =

18. The modulus of 14 + 48i is:

19. (2− 5i)2 = a + bi, a + b =

20. (5 + 4i)(3 + 2i) = a + bi, a =

21. (0 + 4i)2 = a + bi, b =

22. (4 + 5i)(4− 5i) =

23. The modulus of (11 + 60i)2 is:

24. (0− 3i)5 = a + bi, b =

25. (3− 5i)(2 + i) = a + bi, a + b =
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26. (4− 2i)(3− i) = a + bi, a + b =

27. (1 + i)9 =

28. (2 + 3i)÷ (3− 2i) = a + bi, b =

29. (2− 3i)÷ (3− 2i) = a + bi, a =

30. (2i)6 =

31. (3 + 4i)÷ (5i) = a + bi, a + b =

32. The modulus of (24 + 7i)2 is:

33. (3i− 2)÷ (3i + 2) = a + bi, b =

34. The modulus of (5 + 12i)2 is:

3.1.11 Function Inverses

Usually on the last column you are guaranteed to have to compute the inverse of a function at a particular
value. The easiest way to do this is to not explicitly solve for the inverse and plug in the point but rather,
compute the inverse at that point as you go. For example if you are given a function f(x) = 3

2x − 2 and
you want to calculate f−1(x) at the point x = 3, you don’t want to do the standard procedure for finding
inverses (switch the x and y variables and solve for y) which would be:

x =
3
2
y − 2 ⇒ y = (x + 2) · 2

3
at x=3: ⇒ y = (3 + 2) · 2

3
=

10
3

Not only do you solve for the function, you have to remember the function while you’re plugging in numbers.
An easier way is just switch the x and y variables, then plug in the value for x, then compute y. That way
you aren’t solving for the inverse function for all points, but rather the inverse at that particular point. Let’s
see how doing that procedure would look like:

x =
3
2
y − 2 ⇒ 3 =

3
2
y − 2 ⇒ y = (3 + 2) · 2

3
=

10
3

Although this might not seem like much, it does help in saving some time.

Another important thing to remember when computing inverses is a special case when the function is in
the form:

f(x) =
ax + b

cx + d
⇒ f−1(x) =

−dx + b

cx− a
This was a very popular trick awhile back, but slowly it’s appearance has been dwindling, however that does
not mean a resurgence is unlikely. The important thing to remember is to line up the x’s on the numerator
and denominator so it is in the require form. Here is an example problem to show you the trick:

Find f−1(2) where f(x) =
2x + 3
4 + 5x

.

f(x) =
2x + 3
4 + 5x

=
2x + 3
5x + 4

⇒ f−1(x) =
−4x + 3
5x− 2

So f−1(2) =
−4 · 2 + 3
5 · 2− 2

=
−5
8

.

Here are some problems to give you some practice:

Problem Set 3.1.11
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1. f(x) = 3x + 2, f−1(−2) =

2. f(x) =
4x

5
, f−1(2) =

3. f(x) = 2− 3x, f−1(1) =

4. f(x) = x2 − 1 and x > 0, f−1(8) =

5. f(x) = 5 + 3x, f−1(−2) =

6. f(x) = 4− 3x, f−1(2) =

7. f(x) =
8

3 + x
, f−1(2) =

8. f(x) =
3− 2x

4
, f−1(−1) =

9. f(x) =
x3

3
+ 3, f−1(−6) =

10. f(x) = 2− 3x
4

, f−1(5) =

11. f(x) = 2x + 1, f−1(3) =

12. g(x) = 3x + 2, g−1(−1) =

13. h(x) = 2x− 3, h−1(−1) =

14. f(x) = 2(x + 3), f−1(−4) =

15. f(x) = 2− 3x, f−1(4) =

16. h(x) = 5x− 3, h−1(2) =

17. h(x) = 5− 3x, h−1(−2) =

18. f(x) = 2x + 2, f−1(−2) =

19. f(x) = 3x− 3, f−1(−3) =

20. f(x) = 4− 4x, f−1(−4) =

21. f(x) =
3x− 1
x− 3

, f−1(1) =

22. f(x) =
2x + 1
x− 2

, f−1(3) =

23. f(x) =
3x− 1
x− 3

, f−1(−1) =

24. f(x) =
1− 3x
x + 3

, f−1(−2) =

3.1.12 Patterns

There is really no good trick to give you a quick answer to most pattern problems (especially the ones on
the latter stages of the test). However, it is best to try to think of common things associated between the
term number and the term itself. For example, you might want to keep in mind: squares, cubes, factorials,
and fibonacci numbers. Let’s look at some example problems:

Problem: Find the next term of 1, 5, 13, 25, 41, . . .
Solution I: So for this, notice that you are adding to each term 4, 8, 12, 16 respectively. So each time you
are incrementing the addition by 4 so, the next term will simply be 16 + 4 added to 41 which is 61.
Solution II: Another way of looking at this is to notice that 1 = 12 + 02, 5 = 22 + 12, 13 = 32 + 22,
25 = 42 + 32, 41 = 52 + 42, so the next term is equal to 62 + 52 = 61

Problem: Find the next term of 0, 7, 26, 63, . . .
Solution: For this one, notice that each term is one less than a cube: 0 = 13 − 1, 7 = 23 − 1, 26 = 33 − 1,
63 = 43 − 1, so the next term would be equal to 53 − 1 = 124.

Here are some more problems to give you good practice with patterns:
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Problem Set 3.1.12

1. Find the next term of 48, 32, 24, 20, 18, . . .:

2. Find the next term of 1, 4, 11, 26, 57, . . .:

3. Find the next term of 1, 8, 21, 40, . . .:

4. Find the next term of 0, 1, 5, 14, 30, 55, . . .:

5. Find the next term of:
2,9,28,65,126, . . .:

6. The next term of 1, 2, 6, 24, 120, . . . is:

7. The next term of 2, 2, 4, 6, 10, 16, . . . is:

8. Find the 9th term of 1, 2, 4, 8, . . .:

9. Find the 10th term of:
2,6,12,20,30, . . .:

10. Find the 100th term of
2, 6, 10, 14, 18, . . .:

11. The 10th term of 2, 5, 10, 17, 26 . . . is:

12. The next term of 1, 4, 10, 19, 31, . . . is:

13. The 8th term of 2, 9, 28, 65, 126, . . . is:

14. The 8th term of 0, 7, 26, 63, 124, . . . is:

15. The next term of 1, 5, 6, 11, 17, 28, . . . is:

16. Find the next term of .0324, .054, .09, .15, . . .:

3.1.13 Probability and Odds

Usually these problems involve applying the definitions of Odds and Probability which are:

Probability =
Desired Outcomes
Total Outcomes

Odds =
Desired Outcomes

Undesirable Outcomes

So the probability of rolling snake-eyes on a dice would be 1
36 while the odds of doing this would be 1

35 .
Usually the problems involving odds and probability on the number sense tests are relatively simple where
desired outcomes can be computed by counting. The following are some practice problems so you can be
familiar with the types of problems asked:

Problem Set 3.1.13

1. The odds of drawing a king from a
52-card deck is:

2. If 2 dice are tossed, what is the
probability of getting a sum of 11:

3. A bag has a 3 red, 6 white, and 9
blue marbles. What is the probability of
drawing a red one:

4. Three coins are tossed. Find the odds
of getting 3 tails:
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5. The odds of losing are 4-to-9. The
probability of winning is:

6. The probability of winning is
5
9
.

The odds of losing is:

7. The odds of losing is
7
13

.
The probability of winning is:

8. If three dice are tossed once, what is the
probability of getting three 5’s:

9. If all of the letters in the words
”NUMBER SENSE” are put in a box, what are
the odds of drawing an ’E’:

10. The probability of success if
8
17

.
The odds of failure is:

11. If all of the letters in the words
”STATE MEET” were put in a box, what
is the probability of drawing an ’E’:

12. A pair of dice is thrown, the odds that the
sum is a multiple of 5 is:

13. The probability of losing is 44 4
9%.

The odds of winning is:

14. The odds of winning the game is 3 to 5.
The probability of losing the game is:

15. A number is drawn from {1, 2, 3, 6, 18}. The
probability that the number drawn is not a
prime number is:

16. The odds of drawing a red 7 from a
standard 52-card deck is:

17. A number is randomly drawn from the set
{1, 2, 3, 4, 5, 6, 7, 8, 9}. What are the
odds that the number drawn is odd:

18. A number is drawn from the set
{1, 2, 3, 4, 5}. What is the probability
that the number drawn is a factor of 6:

19. The odds of randomly drawing a prime number
from the set {1, 2, 3, 4, 5} is:

20. When two dice are tossed, the probability
that the sum of the faces will be 3 is:

21. A pair of dice is thrown. The probability
that their sum is 7 is:

22. A pair of dice is thrown. The odds that
their sum is 7 is:

23. A pair of dice is thrown. The odds that
the sum is 6 or 8 is:

24. Two dice are tossed. What is the
probability the sum is a multiple of 4:

25. Two dice are tossed. What is the
probability the sum is a multiple
of 5:

26. A die is rolled. What is the probability
that a multiple of 2 is shown:

27. A die is rolled. What is the probability
that a composite number is rolled:

28. A die is rolled. What is the probability
that a factor of 12 is shown:

29. The probability of losing is 4-to-7.
What are the odds of winning:

30. A pair of dice are rolled. What are the
odds that the same number is shown:

31. The odds of drawing an ace followed
by a king from a standard 52-card
deck with replacement is:
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3.1.14 Sets

Questions concerning sets are by far the easiest problems on the number sense tests. The only topics
that are actively questioned are the definitions of intersection, union, complement, and subsets. Let sets
A = {M, E, N, T, A, L} and B = {M,A, T, H} then:

Intersection: The intersection between A and B (notated as C = A ∩ B) is defined to be elements which
are in both sets A and B. So in our case C = A ∩B = {M, A, T} which consists of 3 elements.

Union: The union between A and B (notated as D = A ∪ B) is defined to be a set which contains
all elements in A and all elements in B. So D = A∪B = {M,E,N, T, A,L, H} which consists of 7 elements.

Complement Let’s solely look at set A and define a new set E = {T, E,N}. Then the complement of
E (notated a variety of ways, typically Ē of E′) with respect to Set A consists of simply all elements in A
which aren’t in E. So Ē = {M,A, L}, which consists of 3 elements.

Subsets The number of possible subsets of a set is 2n where n is the number of elements in the set.
The number of proper subsets consists of all subsets which are strictly in the set. The result is that this
disregards the subset of the set itself. So the number of proper subsets is 2n − 1. So in our example, the
number of subsets of A is 27 = 128 and the number of proper subsets is 27 − 1 = 127. Another way to ask
how many different subsets a particular set has is asking how many elements are in a set’s Power Set. So
the number of elements in the Power Set of B is simply 24 = 16.

The following are questions concerning general set theory on the number sense test:

Problem Set 3.1.14

1. Set B has 15 proper subsets. How
many elements are in B:

2. The number of subsets of
{1, 3, 5, 7, 9} is:

3. The number of elements in the power
set of {M, A, T,H} is:

4. If the power set for A contains 32
elements, then A contains how many
elements:

5. The number of distinct elements of
[{t, w, o} ∪ {f, o, u, r}] ∩ {e, i, g, h, t} is:

6. The number of distinct elements of
{m, a, t, h} ∩ {e,m, a, t, i, c, s} is:

7. The number of distinct elements of
[{f, i, v, e} ∩ {s, i, x}] ∪ {t, e, n} is:

8. If universal set U = {2, 3, 5, 7, 9, 11, 13, 17, 19}
and A = {3, 7, 13, 17}, then A’ contains
how many distinct elements:

9. If the universal set U = {n, u, m, b, e, r, s}
and set A = {s, u, m} then the complement
of set A contains how many distinct elements:

10. The universal set U = {n, u, m, b, e, r, s}, A ⊂ U
and A = {e, u}, then the complement
of A contains how many elements:

11. The number of distinct elements in
[{z, e, r, o} ∩ {o, n, e}] ∪ {t, w, o} is:

12. The number of distinct elements in
[{m, e, d, i, a, n} ∩ {m, e, a, n}] ∩ {m, o, d, e} is:

13. The set {F, U,N} has how many subsets:
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14. The set {T, W,O} has how many proper
subsets:

15. Set A has 32 subsets. How many elements
are in A:

16. The set P has 63 proper subsets. How many
elements are in P :

17. Set A has 15 proper subsets. How many
elements are in A:

18. The set A has 8 distinct elements.
How many proper subsets with at least
one element does A have:

19. Set A = {a, b, c, d}. How many proper subsets
does set A have:

20. The number of proper subsets of
{M, A, T, H} is:

21. Set A = {o, p, q, r, s} has how many improper
subsets:

3.2 Changing Bases

3.2.1 Converting Integers

One of the topics I’ve found rather difficult teaching to students is the concept of changing bases. It seems
that students have the concept of a base-10 system so ingrained in their mind (almost always unbeknownst
to them) that it is difficult for them to consider other base systems. Hopefully this section will be a good
introduction to the process of changing bases, and doing basic operations in other number systems. First,
let’s observe how we look at numbers in the usual base-10 fashion.

Everyone knows that 1294 means that you have one-thousand two-hundred and fifty-four of something,
but expressing this in an unusual manner we can say:

1294 = 1 · 1000 + 2 · 100 + 5 · 10 + 4 · 1 = 1 · 103 + 2 · 102 + 9 · 101 + 4 · 100

From this we can see where this concept of “base-10” comes from, we are adding combinations of these
powers of tens (depending on what 0− 9 digit we multiply by). So, you can express any integer n in base-10
as:

n = am · 10m + am−110m−1 + am−2 · 10m−2 + · · · a1 · 101 + a0 · 100

Where all am’s are integers ranging from 0− 9.

The fact that we are summing these various powers of 10 is completely an arbitrary one. We can easily
change this to some other integer (like 6 for example) and develop a base-6 number system. Let’s see what
it would look like:

n = am · 6m + am−16m−1 + am−2 · 6m−2 + · · · a1 · 61 + a0 · 60

Where all am’s are integers ranging from 0− 5.

So to use an example, let look at what the number 1236 (where the subscript denotes we are in base-6) would
look like in our usual base-10 system:

1236 = 1 · 62 + 2 · 61 + 3 · 60 = 1 · 36 + 2 · 6 + 3 · 1 = 36 + 12 + 3 = 5110

From this we have found the way to convert any base-n whole number to base-10!

Let’s look at another example:

33214 = 3 · 43 + 3 · 42 + 2 · 41 + 1 · 40 = 3 · 64 + 3 · 16 + 2 · 4 + 1 · 1 = 192 + 48 + 8 + 1 = 24910
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So now that we know how to convert from base-n to base-10, let’s look at the process on how to convert the
opposite direction:

1. Find the highest power of n which divides the base-10 number (let’s say it is the mth power).

2. Figure out how many times it divides it and that will be your (m + 1)th digit in base-n.

3. Take the remainder and figure out how many times one less than the highest power divides it (so see
how many times nm−1 divides it). That is your (m)th digit.

4. Take the remainder, and continue process.

I know that this might seem complicated, but let’s look at an example we have already done in the “forward”
direction to illustrate how to go “backwards.” Convert 5110 to base-6:

1. Well we know 62 = 36 and 63 = 216, so the highest power which divides 51 is 62.

2. 36 goes into 51 one time, so our 3rd digit is 1.

3. The remainder when dividing 51 by 36 is 15.

4. Now we see how many times 61 goes into 15 (which is 2 times, so our 2nd digits is 2).

5. The remainder when dividing 15 by 6 is 3.

6. 60 = 1 divides 3 obviously 3 times, so our 1st digit is 3

7. So after conversion, 5110 = 1236, which corresponds to what we expected.

As a warning, some digits might be zero when you do the base conversion. Let’s look at an example of this:
Convert 1810 to base-4:

42 = 16 and 43 = 64, so 42 = 16 goes into 18 once with a remainder of 2: Third Digit is 1

Now 41 = 4 doesn’t go into 2: Second Digit is 0

40 goes into 2 twice: First Digit is 2

Answer: 1024

This seems like a lot of steps in making a base conversion, but after substantial practice, it will become
second nature. Here are some practice problems with just converting bases from base-n to base-10 and
reverse.

Problem Set 3.2.1

1. 2125 = 10

2. 108 = 4

3. 20045 = 10

4. 34 + 3 = 9

5. 24 + 2 = 4
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6. 82 = 5

7. 43 + 4 = 4

8. 24 = 2

9. 33 + 3 = 3

10. 48 = 3

11. 43 + 23 = 8

12. 24 + 1 = 8

13. 20010 = 7

14. 72 + 18 + 4 = 6

15. 23410 = 5

16. 1234 = 10

17. 25 + 2 = 4

18. 43010 = 5

19. 54010 = 6

20. 243 + 27 + 3 = 9

21. 2005 = 10

22. 2006 = 10

23. 44 + 42 + 40 = 4

24. 33 + 32 + 30 = 3

25. 216 + 108 + 30 + 5 = 6

26. 44b = 40, then b =

27. 12310 = 5

28. 1234 = 5

29. 82 + 24 + 40 = 4

30. 2345 = 4

31. 686 + 98 + 14 = 7

32. 7710 = 7

33. 43 + 4 = 8

34. 2345 = 10

35. 34 + 32 + 30 = 3

36. 12310 = 4

37. 125 + 75 + 15 + 1 = 5

38. 23410 = 5

39. 1728 + 288 + 36 + 4 = 12

40. 128 + 48 + 12 + 2 = 4

41. Find b when 4b6 = 29:

42. 456 = 9

43. 2104 = 6

44. 438 = 9

45. 345 = 7
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3.2.2 Converting Decimals

In the similar manner of how we analyzed an integer n in base-10, we can took at decimals in base-10 as
well. For example, let’s look at how we see .125 in base-10

.125 = 1 · (.1) + 2 · (.01) + 5 · (.001) = 1 · 10−1 + 2 · 10−2 + 5 · 10−3

You can display this in terms of fractions as well:

=
1
10

+
2

100
+

5
1000

=
1
10

+
1
50

+
1

200
=

20 + 4 + 1
200

=
1
8

Similar to the previous session, we can replace the powers of ten by the power of any fraction. Let’s
look at converting .3216 to a base-10 fraction:

.3216 =
3
6

+
2
36

+
1

216
=

108 + 12 + 1
216

=
121
216

Going in the reverse direction is similar to what you do with integers. The following is a problem set to
give you more practice:

Problem Set 3.2.2

1. Change .325 to a base-10
fraction:

2. Change .345 to a base-10
fraction:

3. Change .1117 to a base-10
fraction:

4. Change .334 to a base-10
fraction:

5. Change .2345 to a base-10
fraction:

6. Change .448 to a base-10
fraction:

7. Change .336 to a base-10
fraction:

8. Change .6612 to a base-10
fraction:

9. Change .2025 to a base-10
fraction:

10. Change .556 to a base-10
fraction:

11. Change .4445 to a base-10
fraction:

12. Change .445 to a base-10
decimal:

13. Change .145 to a base-10
decimal:

14. Change
9
16

to a base-4
decimal:

15. Change
35
36

to a base-6
decimal:

16. Change
15
16

to a base-4
decimal:
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17. Change
15
16

to a base-8
decimal:

18. Change
11
25

to a base-5

decimal:

19. Change
30
49

to a base-7
decimal:

3.2.3 Performing Operations

For some basic operations in other bases, sometimes it is simpler to convert all numbers to base-10, perform
the operations, then convert back to base-n. Let’s look at an example where I would employ this technique:

234 × 34 + 124 = 11× 3 + 6 = 39 = 2134

However, when numbers are larger, this might not be the case, so let’s look at the most popular operations
on the number sense test which are addition (and subsequently subtraction) and multiplication (division is
usually not tested, so I will exclude explaining this operation).

Addition:
For addition of two integers in base-10 we sum the digits one at a time writing down the answer digit (0−9)
and carrying when necessary. Other base-n work in the same manner with the only difference being the
answer digits range from 0 to (n− 1). Let’s look at an example:

1246 + 536 =

First Digit: 46 + 36 116

Second Digit: 56 + 26 + 16 126

Third Digit: 16 + 16 26

Answer: 2216

Subtraction:
Subtraction works in a similar method, only the concept of “borrowing” when you can’t subtract the digits
is slightly altered. When you “borrow” in base-10 you lower the digit you are borrowing from and then
“add” 10 to the adjacent digit to aid in the subtraction. In a different base-n, you will be borrowing in the
same fashion but adding n to the adjacent digit. Let’s look at an example:

1224 − 134 =

First Digit: Since you “can’t” do 2− 3 you have to borrow

(44 + 24)− 34 34

Second Digit: (24 − 14)− 14 04

Third Digit: 14 14

Answer: 1034

In the above expressions, everything in italics represents the borrowing process. When borrowing from

118



the second digit, you lower it by 1 (seen by the −14 ) and then add to the adjacent digit (the first one) 44 .

Multiplication: What I like to do for multiplication in a difference base is essentially perform the FOILing
procedure in base-10 then convert your appropriate result to base-n and apply appropriate carry rules. Let’s
look at a couple of examples (one involving carries and the other one not):

139 × 219 =

First Digit: 1× 3 = 310 39

Second Digit: 1× 1 + 2× 3 = 710 79

Third Digit: 2× 1 = 210 29

Answer: 2739

The above scenario was simple because no carries were involved and converting those particular single
digits from base-10 to base-9 was rather simple. Let’s look at one with carries involved:

459 × 239 =

First Digit: 3× 5 = 1510 169

Second Digit: 3× 4 + 2× 5 + 1 = 2310 259

Third Digit: 2× 4 + 2 = 1010 119

Fourth Digit: 1 1

Answer: 11569

The above example shows the procedure where you do the FOILing in base-10 then convert that to base-9,
write down last digit, carry any remaining digits, repeat procedure. As one can see to perform multiplication
in other bases it is important to have changing bases automatic so that the procedure is relatively painless.

To practice the above three operations here are some problems:

Problem Set 3.2.3

1. 1126 + 46 = 6

2. 536 × 46 = 6

3. 1012 − 112 = 2

4. 445 × 45 = 5

5. 269 ÷ 69 = 9

6. 378 + 568 = 8

7. 889 + 829 = 9

8. 1006 − 446 = 6

9. 1048 − 478 = 8

10. 1435 ÷ 45 = 5
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11. 229 − 669 = 9

12. 1357 × 47 = 7

13. 1324 − 334 = 4

14. 425 − 345 + 235 = 5

15. 1235 × 45 = 5

16. 334 × 34 − 214 = 4

17. 227 × 47 = 7

18. 336 × 36 = 6

19. 226 + 336 + 446 = 6

20. 448 × 48 = 8

21. 326 ÷ 56 × 46 = 6

22. 247 ÷ 67 + 247 = 7

23. 236 + 456 − 506 = 6

24. 235 × 45 − 105 = 5

25. 1234 ÷ 34 = 4

26. 4315 ÷ 45 = 5

27. 2223 × 23 = 3

28. (215 − 125)× 115 = 5

29. (334 + 224)× 114 = 4

30. 2356 ÷ 56 = 6

31. 5437 ÷ 67 = 7

32. 2345 + 4325 = 5

33. 334 × 24 − 114 = 4

34. 445 × 25 + 335 = 5

35. (135 + 125)× 115 = 5

36. 114 × 214 − 34 = 4

37. 125 + 235 + 345 = 5

38. (224 + 334)× 114 = 4

3.2.4 Changing Between Bases: Special Case

When changing between two bases m and n, the standard procedure is to convert the number from base-m
to base-10 then convert that into base-n. However, there are special cases when the middle conversion into
base-10 is unnecessary: when n is an integral power of m (say n = ma, a an integer) or vice versa. The
procedure is relatively simple, take the digits of m in groups of a and convert each group into base-n. For
example, if we are converting 10010012 into base-4, you would take 1001001 in groups of two (since 22 = 4)
and converting each group into base-4. Let’s see how it would look:
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Convert 10010012 to base-4

First Digit: 012 14

Second Digit: 102 24

Third Digit: 002 04

Fourth Digit: 12 14

Answer: 10214

Let’s look at an example where the converting base is that of the original base cubed (so you would take
it in groups of 3):

Convert 1100010112 to base-8

First Digit: 0112 38

Second Digit: 0012 18

Third Digit: 1102 68

Answer: 6138

Similarly, you can perform the method in reverse. So when converting from base-9 to base-3 you would
take each digit in base-9 and convert it to two-digit base-3 representation. For example:

Convert 6439 to base-3

First/Second Digits: 39 103

Third/Fourth Digits: 49 113

Fifth/Sixth Digits: 69 203

Answer: 2011103

Problem Set 3.2.4

1. 469 = 3

2. 489 = 3

3. 10110112 = 8

4. 1234 = 2

5. 21223 = 9

6. 3458 2

7. 1234 = 2

8. 1010112 = 4

9. 2314 = 2

10. 4328 = 2

11. 3124 = 2

12. 11112 = 4
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13. 10112 = 4

14. 1234 = 2

15. 110112 = 4

3.2.5 Changing Bases: Sum of Powers

When asked the sum of a series of powers of two (1+2+4+8+ · · ·+2n), it is best to represent the number
in binary, then we can see the result. For example purposes let’s look at the sum 1+2+4+8+16+32+64.
If we represented them as binary it would be:

1 + 2 + 4 + 8 + 16 + 32 + 64 = 1 · 20 + 1 · 21 + 1 · 22 + 1 · 23 + 1 · 24 + 1 · 25 + 1 · 26 = 11111112

11111112 = 100000002 − 12 ⇒ 27 − 1 = 128− 1 = 127

Although this method is easiest with binary, you can apply it to other powers as well, as long as you are
carefully. For example:

2 + 2 · 3 + 2 · 9 + 2 · 27 + 2 · 81 + 2 · 243 = 2 · 30 + 2 · 31 + 2 · 32 + 2 · 33 + 2 · 34 + 2 · 35 = 2222223

2222223 = 10000003 − 1 = 36 − 1 = 728

3.2.6 Changing Bases: Miscellaneous Topics

There are a handful of topics involving changing bases that rely on understanding other tricks previously
discussed in this book. Take this problem for example:

Problem: Convert the decimal .333 · · ·7 into a base-10 fraction.
Solution: The above problem relies on using the formula for the sum of an infinite geometric series:

.333 · · ·7 =
3
7

+
3
49

+
3

343
+ · · · =

3
7

1− 1
7

=
3
7
× 7

6
=

1
2

Another problem which relies on understanding of how the derivation of finding the remainder of a num-
ber when dividing by 9, only in a different base is:

Problem: The number 1234567 ÷ 6 has what remainder?
Solution: The origins of this is rooted in modular arithmetic (see that section) and noticing that:
7n ∼= 1(mod 6). So our integer can be represented as:

1234567 = 1 · 75 + 2 · 74 + 3 · 73 + 4 · 72 + 5 · 71 + 6 · 70 ∼= (1 + 2 + 3 + 4 + 5 + 6) =
6 · 7
2

= 21 ∼= 3(mod 6)

So an important result is that when you have a base-n number and divide it by n− 1, all you need to do
is sum the digits and see what the remainder that is when dividing by n− 1.

Problem Set 3.2.6
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1. .555 . . .7 = 10

2. The remainder when 1234567 is
divided by 6 is:

3. .666 . . .8 = 10

4. .777 . . .9 = 10

5. .111 . . .5 = 10

3.3 Repeating Decimals

The following sections are concerned with expressing repeating decimals as fractions. All of the problems of
this nature have their root in sum of infinite geometric series.

3.3.1 In the form: .aaaaa. . .

Any decimal in the form .aaaaa . . . can be re written as:

.aaaa . . . =
a

10
+

a

100
+

a

1000
+ · · ·

Which we can sum appropriately using the sum of an infinite geometric sequence with the common difference

being
1
10

(See Sum of Series Section):

a

10
+

a

100
+

a

1000
+ · · · =

a
10

1− 1
10

=
a

10
× 10

9
=

a
9

Which is what we expected knowing what the fractions of
1
9

are. For example:

.44444 . . . =
4
9

3.3.2 In the form: .ababa. . .

In a similar vein, fractions in the form .ababab . . . can be treated as:

.ababab . . . =
ab

100
+

ab

10000
+

ab

1000000
+ · · · =

ab
100

1− 1
100

=
ab

100
× 100

99
=

ab
99

Where ab represents the digits (not a× b). Here is an example:

.242424 . . . =
24
99

=
8
33

You can extend the concept for any sort of continuously repeating fractions. For example, .abcabcabc . . . =
abc

999
, and so on.

Here are some practice problems to help you out:

Problem Set 3.3.2
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1. .272727 . . . =

2. .414141 . . . =

3. .212121 . . . =

4. .818181 . . . =

5. .363636 . . . =

6. .020202 . . . =

7. .727272 . . . =

8. .151515 . . . =

9. .308308 . . . =

10. .231231 . . . =

11. .303303 . . . =

12. .099099099 . . . =

3.3.3 In the form: .abbbb. . .

Fractions in the form .abbbb . . . are treated in a similar manner (sum of an infinite series) with the inclusion
of one other term (the .a term). Let’s see how it would look:

.abbb . . . =
a

10
+

b

100
+

b

1000
+ · · · = a

10
+

b
100

1− 1
10

=
a

10
+

b

90

However we can continue and rewrite the fraction as:

a

10
+

b

90
=

9 · a + b

90
=

(10 · a + b)− a

90

Lets take a step back to see what this means. The numerator is composed of the sum (10 · a + b) which
represents the two-digit number ab. Then you subtract from that the non-repeating digit and place that
result over 90. Here is an example to show the process:

.27777 . . . =
27− 2

90
=

25
90

=
5
18

Here are some more problems to give you more practice:

Problem Set 3.3.3

1. .23333 . . . =

2. .32222 . . . =

3. .21111 . . . =

4. .32222 . . . =

5. .01222 . . . =
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3.3.4 In the form: .abcbcbc. . .

Again, you can repeat the process above for variances. In this example we can represent .abcbc . . . can be
represented in fraction form:

.abcbcbc . . . =
abc− a

990
Where the abc represents the three-digit number abc (not the product a · b · c). Here is an example:

.437373737 . . . =
437− 4

990
=

433
990

It is important for the number sense test to reduce all fractions. This can sometimes be the tricky part.
The easiest way to check for reducibility is to see if you can divide the numerator by 2, 3,or 5. In the above
example, 433 is not divisible by 2, 3, 5 so the fraction is in its lowest form.

Here is an example where you can reduce the fraction:

.2474747 . . . =
247− 2

990
=

245
990

=
49
198

Problem Set 3.3.4

1. .2131313 . . . =

2. .1232323 . . . =

3. .2313131 . . . =

4. .3050505 . . . =

5. .2050505 . . . =

6. .3141414 . . . =

7. .2717171 . . . =

8. .2353535 . . . =

9. .0474747 . . . =

10. .2141414 . . . =

11. .1232323 . . . =

3.4 Modular Arithmetic

A lot has been made about the uses of modular arithmetic (for example all of the sections dealing with
finding remainders when dividing by 3, 9, 11, etc...). Here is a basic understanding of what is going on with
modular arithmetic.

When dividing two numbers a and b results in a quotient q and a remainder of r we say that a÷ b = q + r
b .

With modular arithmetic, we are only concerned with the remainder so the expression of
a÷ b = q + r

b ⇒ a ∼= r(mod b).

So you know 37 ÷ 4 has a remainder of 1, so we say 37 ∼= 1(mod 4). As noted before, what’s great
about modular arithmetic is you can do the algebra of remainders (See: Remainders of Expressions Section).
From this rule alone is where all of our divisibility rules come from. For example, let’s see where we get our
divisibility by 9 rule:
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Recall we can express any base-10 number n by: n = am10m + am−110m−1 + · · ·+ a1101 + a0100

So when we are trying to see the remainder when dividing by 9, we want to find what x is in the expression
n ∼= x(mod 9).

However we do know that 10 ∼= 1(mod 9), meaning 10a ∼= 1(mod 9) for all a ≥ 0. So:

n = am10m + am−110m−1 + · · ·+ a1101 + a0100 ∼= (am + am−1 + · · ·+ a1 + a0)(mod 9)

. Well am + am−1 + · · ·+ a1 + a0 is just the sum of the digits, so we just proved that in order for a number
n to be divisible by 9 then the sum of it’s digits have to be divisible by 9!

Learning the basics in modular arithmetic is not only crucial for recognizing and forming divisibility rules
but also they pop up as questions on the number sense test. For example:

Find x, 0 ≤ x ≤ 4, if x + 3 ∼= 9(mod 5)

Here we know that 9 ∼= 4(mod 5), so the problem reduces to finding x restricted to 0 ≤ x ≤ 4 such that
x + 3 ∼= 4(mod 5), which simply makes x = 1.

The following are some more problems to get you some practice on modular arithmetic:

Problem Set 3.4

1. x + 6 ∼= 9(mod 7), 0 ≤ x ≤ 6
x =

2. 47 ÷ 7 has a remainder of:

3. 25 × 35 ÷ 5 has a remainder of:

4. 26 × 34 ÷ 5 has a remainder of:

5. 87 ÷ 6 has a remainder of:

6. If N is a positive integer and
4N÷ 5 has a remainder of 2
then N÷ 5 has a remainder of:

7. x + 3 ∼= 9(mod 5), 0 ≤ x ≤ 4
x =

8. x + 4 ∼= 1(mod 8), 0 ≤ x ≤ 7
x =

9. 38 ÷ 7 has a remainder of:

10. 3x ∼= 17(mod 5), 0 ≤ x ≤ 5
x =

11. 3x− 2 ∼= 4(mod 7), 0 ≤ x ≤ 7
x =

12. 68 ÷ 7 has a remainder of:

13. 37 ÷ 7 has a remainder of:

14. 54 ÷ 11 has a remainder of:

3.5 Fun with Factorials!

All of these problems incorporate common factorial problems.
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3.5.1 1 · 1! + 2 · 2! + · · ·+ n · n!

The sum of 1 · 1! + 2 · 2! + · · ·+ n ·n! is a fairly simple problem if you know the formula (its derivation is left
to the reader).

1 · 1! + 2 · 2! + · · ·+ n · n! = (n + 1)!− 1

The simplest case would be to compute sums like:

1 · 1! + 2 · 2! + 3 · 3! + 4 · 4! = (4 + 1)!− 1 = 120− 1 = 119

There are slight variations which could be asked (the easiest of which would be leaving out some terms).

1 · 1! + 3 · 3! + 5 · 5! = (5 + 1)!− 1− 2 · 2!− 4 · 4! = 720− 1− 4− 96 = 619

The following are some practice problems:

Problem Set 3.5.1

1. 1 · 1! + 2 · 2! + 3 · 3! + 4 · 4! + 5 · 5! =

2. 1 · 1! + 2 · 2! + · · ·+ 6 · 6! =

3. 1 · 1! + 2 · 2! + · · ·+ 7 · 7! =

4. 1 · 1!− 2 · 2!− 3 · 3!− 4 · 4! =

5. 2 · 1! + 3 · 2! + 4 · 3! + 5 · 4! =

3.5.2
a!± b!

c!
This problem has pretty much nothing to do with factorials and mostly with basic fraction simplification.
Take the following example:

8! + 6!
7!

=
8!
7!

+
6!
7!

= 8
1
7

Sometimes it is easier to just factor out the common factorial, for example:

3! + 4!− 5!
3!

=
3! · (1 + 4− 5 · 4)

3!
= 1 + 4− 20 = −15

Problem Set 3.5.2

1.
8! + 6!

7!
=

2.
10! + 8!

9!
=

3.
7!− 5!

6!
=

4.
11!− 9!

10!
=

5.
10!− 11!

9!
=

6. 6 · 5 · 4!− 5! =
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7. (2! + 3!)÷ 5! =

8. (2!× 3!)− 4! =

9. 7!÷ 6!− 5! =

10. 7× 5!− 6! =

11. 2!− 3!× 5! =

12. 8!÷ 6!− 4! =

13.
5! · 4!

6!
=

14.
4× 5!− 5× 4!

4!
=

15.
4× 5! + 5× 4!

4!
=

16.
6× 7!− 7× 6!

6!
=

17.
10× 9!− 10!× 9

9!
=

18.
8!× 7− 8× 7!

7!
=

19.
11× 10!− 11!× 10

11!
=

20. 6!÷ (3!× 2!) =

3.5.3 Wilson’s Theorem

I’ve seen a couple of questions in the latter stages of the number sense question which asks something along
the lines of:

6! ∼= x(mod 7), 0 ≤ x ≤ 6, x =?

Questions like this use the result from Wilson’ Theorem which states:

For prime p, (p− 1)! ∼= (p− 1)(mod p)

So using the above Theorem, we know that 6! ∼= x(mod 7), 0 ≤ x ≤ 6, x = 6.

It is essentially for p to be prime Wilson’s Theorem to be applicable. Usually, with non-prime factorial
problems, you can lump common factors and then can check divisibility. For example:

4! ∼= x(mod 6), 0 ≤ x ≤ 5, x =?

Well we know that 4! = 4 · 3 · 2 · 1 = 4 · 6 ∼= 0(mod 6) ⇒ x = 0.

The following are some more problems to give you some practice:

Problem Set 3.5.3

1. (4!)(3!)(2!) ∼= x(mod 8), 0 ≤ x ≤ 7.
x =

2. (4 + 2)! ∼= x(mod 7), 0 ≤ x ≤ 6.
x =

3. (5− 2)! ∼= x(mod 5), 0 ≤ x ≤ 5.

x =

4.
5! · 3!

4!
∼= k(mod 8), 0 ≤ k ≤ 7.

k =

5.
5! · 4!

3!
∼= k(mod 9), 0 ≤ k ≤ 8.
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k = 6. 5! · 3! ∼= k(mod 8),0 ≤ k ≤ 7.
k =

3.6 Basic Calculus

If you are one of the fortunate people to reach the end of the fourth column, you will experience usually
two or three calculus related problems which are relatively simple if you know the basics of calculus. If you
haven’t had basic calculus preparation, the following is a rough introduction on the computations of limits,
derivatives, and integrals associated with the number sense test.

3.6.1 Limits

Usually the limits are the simplest kind where simple substitution can be used to get an appropriate answer.
For example:

lim
x→3

3x2 − 4 = 3 · 32 − 4 = 23

However certain problems, which when passing the limit, might lead to a
0
0

violation. In this case, you
want to see if there are any common factors that you can cancel so that passing the limit doesn’t give you
an indeterminate form. Let’s look at an example:

lim
x→2

(x− 2)(x + 3)
(x + 5)(x− 2)

= lim
x→2

(x + 3)
(x + 5)

=
5
7

If we had plugged in x = 2 into the original problem, we would have gotten a
0
0

form, however after canceling
the factors, we were able to pass the limit.

The final testable question concerning limits involve l’hôpitals rule (this requires the understanding of
derivatives in order to compute it, see the next section for instructions on how to compute that). L’hôpitals

rule states that if you come across a limit that gives an indeterminant form (either
0
0

or
∞
∞ ) you can compute

the limit by taking the derivative of both the numerator and the denominator then passing the limit. So:

lim
x→n

f

g
=

0
0

or
∞
∞ ⇒ lim

x→n

f

g
= lim

x→n

f ′

g′

Let’s look at an example of l’hôpitals rule with computing the limit lim
x→0

sin x

x
:

lim
x→0

sin x

x
=

0
0
⇒ lim

x→0

sin x

x
= lim

x→0

(sinx)′

x′
= lim

x→0

cos x

1
= 1

The following are some more practice problems with Limits:

Problem Set 3.6.1

1. lim
x→∞

3x + 8
7x− 4

= 2. lim
x→4

2x− 6 =
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3. lim
x→2

x2 − 4
x− 2

=

4. lim
x→2

x3 − 8
x2 − 4

=

5. lim
x→∞

3x− 1
x

=

6. lim
x→3

x3 − 27
x− 3

=

7. lim
x→0

x2 − 3x

x
=

8. lim
x→3

x3 − 27
x2 − 9

=

3.6.2 Derivatives

Usually on the number sense test, there is guaranteed to be a derivative (or double derivative) of a polynomial.
Almost every single time, the use of the power rule is all that is required, so let’s see how we can take the
derivative of a polynomial:

Define f(x) = anxn + an−1x
n−1 + · · ·+ a1x

1 + a0x
0

Then

f ′(x) = an(n)xn−1 + an−1(n− 1)xn−2 + · · ·+ a1(1)x0

So the procedure is you multiply the coefficient by the power and then lower the power (notice that a
constant after differentiating disappears). Let’s look at an example:

Let f(x) = x3 − 3x2 + x− 3, solve for f ′(2).

f ′(x) = 1 · 3x2 − 3 · 2x + 1 ⇒ f ′(2) = 1 · 3 · 22 − 3 · 2 · 2 + 1 = 1

When approached with taking double derivatives (f ′′(x)), then just follow the procedure twice:

Let f(x) = 5x3 + 3x2 − 7, solve for f ′′(1).

f ′(x) = 5 · 3x2 + 3 · 2x = 15x2 + 6x

f ′′(x) = 15 · 2x + 6 ⇒ f ′′(1) = 30 · 1 + 6 = 36

In the off chance that the derivative of sine/cosine or ex/ln x is needed (like for using l’hôpitals rule),
here is a chart showing these functions and their derivatives:

Function Derivative

sinx cos x

cosx − sin x

ex ex

ln x 1
x

For more derivative rules, consult a calculus textbook (it would be good to be familiar with more derivative
rules for the math test, but unlikely those rules will be applied to the number sense test).

Here are some problems to practice taking derivatives:

Problem Set 3.6.2
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1. f(x) = 3x2 + x− 5, f ′(−2) =

2. f(x) = x2 − 2x + 22, f ′(2) =

3. f(x) = x33− 3x + 3, f ′′(2) =

4. g(x) = 2x2 − 3x + 1, g′(2) =

5. f(x) = 3x3 − 3x + 3, f ′(−3) =

6. f(x) = 4x3 + 2x2, f ′′(−.5) =

7. f(x) = x3 − 3x + 3, f ′(3) =

8. f(x) = x4 − 4x + 4, f ′(4) =

9. f(x) = 3x2 + 4x− 5, f ′(−6) =

10. f(x) = 2x3 − 3x4, f ′′(−1) =

11. f(x) = 4x3 − 3x2 + 1, f ′(−1) =

12. f(x) = x2 − 3x + 4, f ′′(−1) =

13. f(x) = 3x + 5x2 − 7x4, f ′(1) =

14. f(x) = 3x3 − 2x2 + x, f ′′(1) =

15. f(x) = 2x3 − 4x2 + 6x, f ′(1) =

16. f(x) = x5 + x3 − x, f ′′(2) =

17. f(x) = 4x3 − 3x2 + x, f ′(−1) =

18. f(x) = x3 − 3x2 + 5x, f ′′(2) =

19. f(x) = 4x3 − 3x2 + 2x, f ′′(1) =

20. f(x) = 2x2 − 3x + 4, f ′(−1) =

21. f(x) = 4− 3x− 2x2, f ′(−1) =

22. g(x) = x3 − 3x− 3, g′(−3) =

23. g(x) = 2x3 + 3x2 + 5, g′′(4) =

24. h(x) = 1 + 2x2 − 3x3, h′′(4) =

25. f(x) = 4− 3x2 + 2x3, f ′′(5) =

26. f(x) = x3 − 3x + 3, f ′(−3) =

27. f(x) = x4 − 4x2 + 4, f ′(−4) =

28. f(x) = 3x3 + 3x− 3, f ′(−3) =

29. f(x) = 3x2 − 4x + 2, f ′(
1
3
) =

3.6.3 Integration

Again, only basic integration is required for the number sense test. The technique for integrating is essentially
taking the derivative backwards (or anti-derivative) and then plugging in the limits of integration. The
following shows a generic polynomial being integrated:

∫ b

a

anxn+an−1x
n−1+· · ·+a1x

1+a0x
0dx = F (x) =

(
an

n + 1
xn+1 +

an−1

n
xn + · · ·+ a1

2
x2 +

a0

1
x1

)b

a

= F (b)−F (a)

Let’s look at an example:
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Evaluate
∫ 2

0

3x2 − x dx.

∫ 2

0

3x2 − x dx =
(

x3 − 1
2
x2

)2

0

= (23 − 1
2
22)− (03 − 1

2
· 0) = 6

Again, you can apply the table in the previous section for computing integrals of functions (just go in
reverse).

To end this section on Integration, there is one special case when integrating which makes the integral
trivial, and that is: ∫ a

−a

Odd Function dx = 0

So when you are integrating an odd function who’s limits are negatives of each other, the result is zero. Let’s
look at an example of where to apply this:

∫ π
4

−π
4

sin(x) dx = 0

Since sine is an odd function, the integral (with the appropriate negative limits) is simply zero!

The following are some more practice problems concerning integration:

Problem Set 3.6.3

1.
∫ 2

0

x2 + 3 dx =

2.
∫ 4

2

2x− 3 dx =

3.
∫ 4

1

2x dx =

4.
∫ 3

−3

x2 dx =

5.
∫ 4

0

x

2
dx =

6.
∫ 1

0

x
3
4 dx =

7.
∫ 3

1

(x2 − 2) dx =

8.
∫ 4

−2

x + 1 dx =

9.
∫ π

0

sinx dx =

10.
∫ π

0

cosx dx =

11.
∫ 3

0

x

3
dx =

12.
∫ 3

1

x2 dx =

13.
∫ 3

1

3x

2
dx =

14.
∫ 3

1

x−2 dx =

15.
∫ 3

2

1

x−2 dx =

16.
∫ 1

0

1− x2 dx =

17.
∫ 4

0

√
x dx =

18.
∫ 2

−1

4x dx =
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19.
∫ 3

0

x2 dx =

20.
∫ e

1

2
x

dx =

21.
∫ 4

0

x− 1 dx =

22.
∫ 2

0

x3 dx =

23.
∫ e

1

−3
x

dx =

24.
∫ 3

0

2x + 1 dx =

25.
∫ 1

0

x
2
3 dx =

26.
∫ 14

0

13− x dx =

27.
∫ 1

−1

x + 1 dx =

28.
∫ 1

0

√
x dx =

29.
∫ 1

0

3
√

x dx =

30.
∫ 2

−1

3x2 dx =

31.
∫ 4

2

3
5
x dx =

32.
∫ 2

1

x3 dx =

33.
∫ 2

0

x3 dx =

34.
∫ 2

0

x3 + 1 dx =

35.
∫ 2

0

x dx =

36.
∫ 2

−1

2x dx =

37.
∫ 4

0

3− x dx =

38.
∫ 2

0

3x

4
dx =

39.
∫ 3

0

4x

3
dx =
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4 Additional Problems

The following are assortment of problems which don’t occur frequently enough to warrant a section in this
book:
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5 Solutions

The following are solutions to the practice problems proposed in the previous sections.

Problem Set 1.1:

2850 7020 561 4233

3392 5265 6992 1150

8648 1728 918 847

3828 5418 4968 5644

4680 7776 5073 2450

1088 6688 242 2484

1820 1320 2976 2240

4836 3819 1232 5680

3111 1215 896 1739

7663 8613 2646 1943

3724 3525 2618 4606

2059 5610 845 704

930 2795 5328 2009

1610 5400 3127 7462

238 1809 2125 2475

4384 31672 46812 29430

17277 36950 21489 48312

42658 3564 5994 69030

22270 27664 11022 13545

294849 128472 211554 124890

13431 397946 185364 283251

190005 66789 293007 176712
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Problem Set 1.2.1:

1. 594

2. 792

3. 418

4. 5082

5. 814

6. 726

7. 2.53

8. 572

9. 2706

10. 50616

11. 18

12. 3927

13. 25

14. 35631

15. .275

16. 4884

17. 34

18. 9657

19. 26

20. 5883

21. 27

22. 203

23. 2178

24. 27

25. 4551

26. 3885

27. 38295

28. 222333

29. 1155

30. 14641

31. 36663

32. 704

33. 333

34. 22.077

35. 2.42%

36. 1573

37. 252

38. 22066

39. 14641

40. 1452

41. 858

42. 2662

43. 2420

44. 2310

45. 23

46. 13794

47. 12100

48. 1815

49. (*) 648− 717

50. 182

51. 6776

52. (*) 31181− 34465

53. 14641

54. 23

55. 6006

56. 136653

57. 2310

58. 15004

59. (*) 75897− 83853

Problem Set 1.2.2:

1. 124634

2. 2363.4

3. 37269

4. 345

5. 222

6. 24846

7. $15.15

8. 448844

9. (*) 14488− 16014

10. (*) 2398− 2652
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Problem Set 1.2.3:

1. 6000

2. 10800

3. 6.5

4. 3700

5. 825

6. 2.56

7. 3675

8. 10450

9. 24.64

10. 101

11. .44

12. 80800

13. (*) 376− 417

14. 6
25

15. 5225

16. 850

17. (*) 1265− 1400

18. 85.6%

19. 16.16

20. 7575

21. (*) 376− 417

22. 7
25

23. 80.24

24. 7675

25. 1280

26. (*) 185− 205

27. 50075

28. 4125

29. 6600

30. 4950

31. (*) 14842800−
16405200

Problem Set 1.2.4:

1. 3600

2. 4800

3. .88

4. 6300

5. (*) 560− 620

6. 2100

7. 1800

8. (*) 10504127−
11609825

9. .64

10. (*) 719− 796

11. 1.28

12. 19800

13. 64

14. 54000

15. 72.6

Problem Set 1.2.5:

1. 40000

2. (*) 189992−
209992

3. 1.104

4. (*) 425− 471

5. (*) 2212− 2446

6. (*) 1054− 1166

7. 200000

8. (*) 6628− 7326

9. (*) 192850−
213150

10. 6000

11. (*) 139− 154

12. (*) 4620− 5107

13. (*) 3917− 4330

14. (*) 384750−
425250

15. 153000
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16. (*) 307− 341

17. 121

18. (*) 597668−
660582

19. (*) 8957133−
9899991

20. (*) 114− 126

21. 183000

22. (*) 7440353−
8223549

23. (*) 1261− 1395

24. (*) 646− 714

25. (*) 22757− 25153

26. 210000

27. (*) 3360− 3715

28. 9300

29. (*) 347699652−
384299616

30. .02

31. (*) 5842616−
6457630

32. (*) 2020− 2233

33. (*) 3528− 3900

34. (*) 321− 356

35. (*) 474999−
525000

36. (*) 1030− 1140

37. (*) 326− 362

38. (*) 1576− 1743

39. (*) 461428−
510000

40. (*) 38240− 42267

41. (*) 182076−
201242

42. 60.25

43. (*) 593749−
656250

44. (*) 652− 721

45. (*) 775848−
857518

46. (*) 1056− 1168

47. (*) 2253− 2492

48. (*) 93755−
103625

49. (*) 4303− 4757

50. (*) 450570−
498000

51. (*) 84142−
93000

52. (*) 583− 646

53. (*) 58163−
64286

54. (*) 7546054−
8340376

55. (*) 664694−
734662

56. (*) 1644− 1818

57. 40625

58. (*) 99071−
109500

59. (*) 232071−
256500

60. (*) 113491195−
125437637

61. (*) 18457124−
20399980

62. (*) 484306−
535286

63. (*) 6641817−
7340957

64. (*) 24− 28

65. (*) 35624− 39375

66. (*) 47362− 52348

67. (*) 5277− 5834

68. (*) 118− 132

69. (*) 8130− 8986

70. (*) 6332− 7000

71. (*) 54204− 59910

72. (*) 237− 263

73. (*) 50805− 56154

74. (*) 14776− 16332

75. (*) 12324− 13622

76. (*) 200163−
221233

77. (*) 577− 639

78. (*) 21855−
24157

79. (*) 632− 700

80. (*) 605− 670

81. (*) 1159− 1283

82. (*) 3167− 3502

83. (*) 139− 155

84. (*) 117040−
129362
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Problem Set 1.2.6:

1. 7.8

2. 72

3. 96

4. 720

5. 2842

6. 4368

7. 840

8. 4368

9. 3.6

10. 2016

11. 378

12. 4410

13. 22.5

14. 4140

15. 1.5

16. 10.56

17. 700

Problem Set 1.2.7:

1. 8633

2. 9312

3. 11227

4. 9021

5. 11021

6. 8277

7. 11016

8. 11663

9. 8544

10. 8924

11. 10712

12. 10506

13. 8556

14. 11342

15. 8633

16. 8212

17. 8554

18. 8918

19. 987042

20. 9888

21. 9579

22. 980099

23. 1013036

24. 10379

25. 9672

26. 9888

27. 982081

28. 10088

29. 1011024

30. (*) 18062−
19964

31. 12996

Problem Set 1.2.8:

1. 6.25

2. 1.225

3. 625

4. 13225

5. 3025

6. −24.75

7. (*) 19699− 21773

8. 255025

9. 14

Problem Set 1.2.9:
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1. 3364

2. 260100

3. 2209

4. 2809

5. (*) 111720−
123480

6. 3136

7. 3481

8. 1681

Problem Set 1.2.10:

1. 7224

2. 3021

3. 2496

4. 3596

5. 48.96

6. 7216

7. 864

8. 63.84

9. 24.91

10. 3025

11. 9984

12. 7225

13. 1225

14. 5625

15. 4225

16. 1225

17. 441

18. 4225

19. 2025

20. 7225

21. 3025

22. 1064

23. 2000

24. 5625

25. 4842

26. 900

27. 5625

28. 5625

29. 3025

30. 9975

31. 4200

32. 936

33. 7200

34. 625

35. 1073

36. −7200

37. 9856

38. (*) 4745− 5245

39. (*) 4016− 4440

40. (*) 9305− 10285

41. (*) 3035− 3355

42. (*) 26270− 29036

43. (*) 101076
111716

44. 14400

45. (*) 62132− 68673

46. (*) 1423267−
1573085

Problem Set 1.2.11:

1. 1462

2. 736

3. 403

4. 252

5. 1944

6. 976

7. 765

8. 574

9. 1458

10. 2268

11. 1008

12. 1612
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Problem Set 1.3.1:

1. 40804

2. 164836

3. 253009

4. 368449

5. 43264

6. 93636

7. 259081

8. 646416

9. 495616

10. 166464

11. 362404

12. 91809

13. 826281

14. 161604

15. 499849

16. 34013

17. 644809

18. 163216

19. 262144

20. 37942

21. 374544

22. 96942

23. 509796

24. 49374

25. 23632

26. 67196

27. 24969

28. 49731

29. 46144

30. 204020

31. 35143

32. 15004

33. 842724

34. 38688

35. 37942

36. 274576

37. 41363

38. 19881

39. 108332

40. 25864

41. 144288144

42. 444889

Problem Set 1.3.2:

1. 640

2. 810

3. 450

4. 0

5. 1210

6. −660

7. 16.9

8. 10020

9. 1280

10. 380

11. 12030

12. 0

13. 441

14. 960

15. 5100

16. 660

17. 490

18. −10030

19. 384

20. 14.4

21. 196

22. 1024

23. 330

24. 484

25. 2450

26. 870

27. 256

28. 3540
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29. −196

30. 289

31. −289

32. 1080

33. 4830

34. 2002

35. 1210

36. 2160

37. 6320

38. 1188

39. 363

40. 14280

41. 1560

42. −324

43. 3300

44. 9900

45. 0

46. −1210

47. 2775

48. 540

49. 576

50. 16770

51. 910

52. (*) 1825− 2019

53. 3300

54. 720

55. (*) 12108
13384

56. (*) 9076− 10032

57. 1056

58. 11990

59. (*) 8015− 8859

60. 672

61. (*) 2050− 2266

62. 1584

63. (*) 4698− 5194

64. 2250

65. 4662

66. −588

67. (*) 9516− 10518

68. 2100

69. 3774

70. (*) 3659− 4045

Problem Set 1.3.3:

1. 2521

2. 313
3. 481

4. 1301

5. 3281
6. 12961

Problem Set 1.3.4:

1. 462

2. 1920

3. 380

4. 128

5. 160

6. 124

7. 1920

8. 12960

9. 550

10. 3760

11. 6380

12. 120

13. 2280

14. 3360

15. 128

16. 1680

17. 880

18. 450

19. 550

20. 128

21. 5300

22. 2300
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Problem Set 1.3.5:

1. 9090

2. 505

3. 5353

4. 6868

5. 4141

6. 4545

7. 6161

8. 5858

Problem Set 1.3.6:

1. 145

2. 140

3. −115

4. 133

5. 272

6. −109

7. 264

8. 175

9. −97

10. 193

11. 153

12. 107

13. −172

14. 11.2

15. −6.72

16. 254

17. 540

18. 218

19. 300

20. −30

21. −94

22. 525

23. 326

24. 321

25. 170

26. 438

27. −363

28. 302

29. 720

30. 218

31. −1560

32. −70

33. −170

34. 288

35. 105

36. 18

37. 78

38. −238

39. −900

40. 168

41. 1014

42. −1540

43. −616

44. 715

45. −272

46. 672

47. 894

Problem Set 1.3.7:

1. 1575

2. 4275

3. 2275

4. 4675

5. 2925

6. 2975

7. 6175

8. 5225
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Problem Set 1.3.8:

1. 35
1
16

2. 72
2
9

3. 12
4
25

4. 29
1
6

5. 101
1
16

6. 139
1
36

7. 75
1
36

8. 245
1

121

9. 137
4
25

10. 53.04

11. 40
4
9

12. 101
1
49

13. 53
1
25

14. 131
1
25

15. 29
4
25

16. 131
1
64

17. 138
2
3

18. 21
7
12

19. 131

20. 64
4
9

21. 160
4
9

22. 351
1
49

23. 9

24. 9.03

25. 41

26. 44
4
9

27. 79.04

28. 21
7
15

29. 5

30. 5.7

31. 12
24
25

Problem Set 1.3.9:

1. 8
9
14

2. 19
9
25

3. 15
16
23

4. 22
25
32

5. 13
9
19

6. 24
25
34

7. 28
9
34

8. 8
9
17

9. 11
9
14

10. 23
9
16

11. 13
16
17

12. −13
14

13. −17
18

14. −2
16
25

15. −2
8
17

16. 30
16
21

17. −2
7
16

18. −11
12

19. −3
11
15

20. −2
8
17

21. −1
13
17

22. 37
9
38

23. −1
11
15

Problem Set 1.3.10:

1. (*) 2553− 2823

2. (*) 25356− 28026
3. (*) 3149− 3481

4. (*) 5958− 6586

5. (*) 106799−

118041

6. (*) 34108− 37700
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7. (*) 39398− 43545

8. (*) 126445−
139755

9. (*) 14630− 16170

10. (*) 624255−
689967

11. (*) 97917−
108225

12. (*) 760958−
841060

13. (*) 31005− 34269

14. (*) 9771− 10801

15. (*) 80548− 89028

16. (*) 65555− 72457

17. (*) 60693− 67083

18. (*) 60762− 67158

19. (*) 2048− 2265

20. (*) 86184− 95256

21. (*) 157586−
174174

22. (*) 7524− 8316

23. (*) 34108− 37700

24. (*) 523488−
578592

25. (*) 25536− 28224

26. (*) 298452−
329868

27. (*) 260646−
288084

28. (*) 1740− 1924

29. (*) 8257− 9127

30. (*) 5728− 6332

31. (*) 28260− 31236

32. (*) 3513− 3883

33. (*) 53437500−
59062500

34. (*) 25650− 28350

35. (*) 95000−
105000

36. (*) 475089−
525099

37. (*) 3910− 4322

38. (*) 150292−
166114

39. 2592

40. (*) 3406− 3766

Problem Set 1.4.1:

1. 0

2. 2

3. 3

4. 3

5. 0

6. 5

7. 4

Problem Set 1.4.2:

1. 2

2. 5
3. 0

4. 7

5. 2
6. 8

Problem Set 1.4.3:

1. 8

2. 5

3. 9

4. 9

5. 0

6. 8

7. 5

8. 7
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9. 4 10. 4

Problem Set 1.4.4:

1. 4

2. 2

3. 2

4. 6

5. 0

6. 3

7. 0

8. 6

9. 7

10. 0

11. 8

12. 7

13. 0

14. 2

15. 6

Problem Set 1.4.5:

1. 1

2. 3

3. 0

4. 2

5. 2

6. 2

7. 4

8. 0

9. 4

10. 1

11. 2

12. 5

13. 2

14. 2

15. 3

16. 3

17. 0

18. 5

19. 2

20. 4

21. 3

22. 6

23. 2

24. 3

25. 2

26. 2

27. 2

Problem Set 1.4.6:

1. 39
1
3

2. 55
8
9

3. 222
5
9

4. 35
2
3

5. 50
2
3

6. 137
1
9

7. 1371
2
3

8. 55

Problem Set 1.4.7:
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1. 2.5%

2. 7.5%

3. 17.5%

4. 52.5%

5. 1.075

6. .075

7. 1
1
4
%

8. 20%

9. 17.5%

10. 40

11. 27.5%

12. .045

13. 18

14. .025

15. 435%

16. 6.25%

17.
11
40

18. .32

19. 8%

20. .0081

Problem Set 1.5.1:

1. 198

2. −396

3. 1998

4. 495

5. 99

6. 2997

7. −3996

8. −999

9. −198

10. −4995

Problem Set 1.5.2:

1. −1
1
6

2. −1
14
15

3. −2

4. −1
17
20

5. −1
4
7

6. −7
8

7. −4
1
8

8. −5
1
10

9. −1
8
9

10. −7
1
14

11. −3
1
6

12. −1
5
6

13. −8
1
12

14. −6
1
12

15. −4
1
2

16. −1
3
5

Problem Set 1.5.3:

1.
4
21

2.
1
24

3.
3
40

4. 1
1
6

Problem Set 1.5.4:
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1. 2
1

156

2. 2
1
30

3. 2
16
285

4.
4
15

5. 1
4
35

6. 1
4

143

7. 1
36
91

8.
1
30

9. 1
4

195

10. 2

11. 3

12. −31
35

13. 1
4

255

14. 1
16
165

15. 1
4

143

16. 1
1

210

17. 3
1

156

18. 1
2
35

19. 1
1

132

20.
49
330

21. −145
154

Problem Set 1.5.5:

1.
13
252

2.
9

203

3.
17
520

4.
22
915

5.
19
495

6.
19

1342

7.
11
584

8.
9

430

9. −11
42

10.
17
900

11. − 37
1620

12.
11
328

13. − 22
435

14.
13
328

15.
17
333

16.
7

165

17.
27
784

18.
19

1342

19.
11
448

20. − 11
414

21.
11
328

22.
18
979

Problem Set 2.1.1:

1. 784

2. 10.24

3. 841

4. 256

5. 961

6. 4.84

7. 1156

8. 289

9. 529

10. 361

11. 324

12. 5.76

13. 529

14. 1024

15. 484

16. 196

17. 441

18. 576

19. 9.61

20. 7.29
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21. 784

22. 1156

23. 676

24. 289

25. 1089

26. −27

27. (*) 972− 1075

28. (*) 372− 412

29. −224

30. .324

31. (*) 14546− 16078

32. (*) 7553− 8349

33. (*) 36495− 40337

34. (*) 379− 420

35. (*) 28227− 31200

36. (*) 27132− 29990

37. (*) 9098− 10057

38. (*) 13166− 14553

39. (*) 79344− 87698

40. (*) 241− 267

41. (*) 496− 549

42. (*) 975− 1078

43. (*) 184756−
204206

Problem Set 2.1.2:

1. 12

2. 1331

3. 3744

4. −7

5. 1728

6. 4096

7. 2

8. 1331

9. −1728

10. 13

11. −9

12. 512

13. 3375

14. 1728

15.
5
4

16. 2197

17. 343

18. −11

19. 216

20. 3375

21. (*) 1653− 1828

22.
1
2

23. 370

24. −2

25. 1.2

26. 64000

27. 1331

28. 1.1

29. (*) 692464−
765356

30. .9

31. (*) 1682982−
1860140

32. −216

33.
1
2

34. 225

35. −217

36. (*) 169059−
186855

37. 343000

38. (*) 1641486−
1814374

39. (*) 2669363−
2950349

40. 4096

Problem Set 2.1.3:
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1. 160

2. −83

3. 32

4. 243

5. −61

6. 3

7. 160

8. 98

9. 40

10. −26

11. 81

12. 3200000

13. 729

14. .04

15. 4000

16. 2560000

17. (*) 3242− 3584

18. 40000

19. 7

20. −144

21. .081

22. 288

23. 29

24. (*) 61− 69

25. 2.5

26. 64000

27. 512000

28. 648000

29. 98000

30. 14400

31. 21600

32. 2025000

33. 2500

34. 64800

35. 8100000

36. 144000

Problem Set 2.1.4:

1.
1
8

2. 220%

3. .56

4.
5
8

5. 2.125

6. 1

7. 60%

8. .125

9. .81

10. 6.25%

11. −.875

12. 275%

13.
5
9

14.
2
3

15. −16
17

16. .46

17. −8
9

18.
3
8

19. .8

20. 43
6
7
%

21. 77
7
9
%

22.
1
2

23. .56

24.
9
11

25.
4
3

26. 43.75%

27. 176

28. 28
4
7
%

29. −.375

30. −4
3

31. 7
1
7
%

32.
7
16

33. 15

34. 3

35. −.27

36. 121

37. − 7
18

38. 31.25%
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39. 1331

40.
3
14

41. 8

42. 10
4
5

43. 21
3
7
%

44.
5
14

45. 6

46.
11
14

47. 10021

48. 8
1
3
%

49. 78
4
7
%

50. 800

51. 1331

52. 80
1
3

53. 135

54.
9
14

55. 13.31

56. 18.75%

57.
1
16

58. 121
3
7
%

59.
3
7

60.
3
80

61.
11

1000

62.
13
14

63.
1
14

64. 2400

65.
11
160

66. 92
6
7
%

67.
2
65

68. 107
1
7
%

69.
3
14

Problem Set 2.1.5:

1. 12012

2. 54

3. 505.05

4. 25025

5. 70707

6. 37

7. 20020

8. 15015

9. 27027

10. 29

11. 60

12. 36036

13. 7

14. 1073

15. 30030

16. 70070

17. 999

18. 55055

19. 75075

20. 153153

21. 10010

22. 18018

23. 7070.7

24. 121.121

25. 35035

26. 909.09

27. 505505

28. 9009

29. 1111.11

30. 303303

31. 5005

32. 28
7
9

33. 7007

34. 36

35. (*) 712− 788

36.
1
3

37. 6006

38. 49

39. 13

40. 48

41. 10010

42. 96

43. 256

44. 11011
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45. 9009

46. 384

47. 36036

48. 7007

49. 60

50. 8
2
9

51. 9009

52. 90

53. 16
4
9

54. 11011

55. 96

56. 24
2
3

57. 147

58. 32
8
9

59. 81

60. 74

61. 789
1
3

62. 37

63. 13013

64. 324

65. 185

66. 175

67. 9009

68. 15015

Problem Set 2.1.6:

1. 2042

2. 44

3. 2003

4. 199

5. 1666

6. 1544

7. 277

8. 1459

9. 999

10. 2222

11. −89

12. 2100

13. 999

14. 534

15. 2017

16. 2007

17. 1664

18. 1666

19. 1364

20. 2006

21. 556

22. 505

23. 1530

24. 66
8
9

25. 34

26. 2005

27. 20

28. 401

29. 2997

30. 11011

31. 50175

32. 84

33. 22066

34. 10.1

Problem Set 2.1.7:

1. 20

2. 20

3. 16

4. 10

5. 4

6. 12

7. 6

8. 20

9. 6

10. 12

11. 20
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Problem Set 2.1.8:

1. (*) 185− 205

2. (*) 683− 756

3. (*) 51− 58

4. (*) 290− 322

5. (*) 5052− 5585

6. (*) 342− 379

7. (*) 1608− 1778

8. (*) 7495− 8285

9. (*) 995− 1100

10. (*) 664− 734

11. (*) 15384− 17005

12. (*) 1221− 1350

13. (*) 5052− 5585

14. (*) 493− 546

15. (*) 46339− 51218

16. (*) 524− 581

Problem Set 2.1.9:

1. 22

2. 126

3. 4.5

4. 240

5. 132

6. 220

7. 440

8. 1760

9. 81

10. 3520

11. 30

12. 10

13. 44

14. .5

15. 2160

16. 8

17. 66

18. 22.5

19. 11

Problem Set 2.1.10:

1. 81

2. 1728

3. 81

4. 3

5. 27

6. 3

7. 5184

8. 2.5

9. 10000

10. 1
1
3

11. 1.5

12. 1

13. 36

14. 3456

15. 500

Problem Set 2.1.11:

1. 4

2. 32
3. 48

4. 693

5. 154
6. 308
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7. 96

8. 16

9.
3
8

10. 6

11. 2

12. 50%

13. 400%

14. 12.5%

15. 225%

16. 400%

17. 11

18. 600%

19. 37.5%

20. 1155

21. 2

22. 1.75

23. 5

24. 3

25. 2.5

26. 112

27.
1
8

28. 231

29. 63

30. 12

31. 147

32. 128

33. 320

Problem Set 2.1.12:

1. 77 2. −40 3. 37

Problem Set 2.2.1.:

1. 132

2. 231

3. 169

4. 123

5. 18

6. 240

7. 100

8.
2
5

9. 96

10. 132

11. 81

12. 506

13. 1.5

14. 441

15. 396

16. 255

17. 4

18. −1
1
8

19. 143

20.
4
5

21. 117

22. 5
1
3

23. 2.5

24. 108

25. 462

26. −3

27. 264

28. 528

29. 4
1
6

30. 98

31. 126

32. 207

33. 91

34. 6
1
4

35. 2
2
3

36. 255
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37. 147

38. 98

39. 1150

40. 16

41. 264

42. (*) 418− 464

43. 396

44. 242

45. 81

46. 6

47. 294

48. 726

49. 161

50. 273

51. 168

52. 528

53. 37

54. 3.2

55. (*) 179763−
198687

56. (*) 4138− 4574

57. 11

58. 141

59. 1.5

60. 9
1
3

61. 80

62. 4.8

63. 77

64. (*) 7866− 8696

65. 3

66. 16

67. (*) 25863− 28587

68. (*) 1231− 1361

Problem Set 2.2.2:

1. 750

2. 372

3. 514

4. 660

5. 804

6. 610

7. 893

8. 534

9. 284

10. 304

11. 372

12. 114

13. 88

14. 6

15. 196

16. 143

17. 319

18. 693

19. 748

Problem Set 2.2.3:

1. 3

2. 9

3. 96

4. 4

5. 10

6. 10

7. 8

8. 12

9. 9

10. 124

11. 36

12. 56

13. 20

14. 42

15. 5

16. 15

17. 192

18. 78

19. 42

20. 8
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21. 56

22. 70

23. 7

24. 55

25. 385

26. 24

27. 24

28. 39

29. 54

30. 35

31. 240

32. 7

33. 10

34. 24

35. 7

36. 35

37. 7

38. 124

Problem Set 2.2.4:

1. 5

2. 9

3. 5

4. 27

5. 20

6. 35

7. 2

8. 14

Problem Set 2.2.5:

1. 140

2. 108

3. 45

4. 1080

5. 120

6. 1440

7. 133

8. 540

Problem Set 2.2.6:

1. 70

2. 40

3. 35

4. 176

5. 276

6. 112

7. 35

8. 51

9. 45

10. 66

11. 78

12. 66

13. 36

14. 18

Problem Set 2.2.7:

1. 9 2. 40 3. 26 4. 15
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5. 4

6. 8

7. 33

8. 5

9. 15

10. 6

11. 7

12. 6

13. 9

14. 8

15. 84

16. 84

Problem Set 2.2.8:

1. 3

2. 6

3. 2
√

3

4. 12

5. 4

6. 18

7. 3

8. 9

Problem Set 2.2.9:

1. 726

2. 144π

3. 27

4. 96

5. 64

6. 216

7. 512

8. 1728

9. 224

Problem Set 2.2.10:

1. 60

2. 10

3. 20

4. 35

5. 840

6. 30

7. 28

8. 10

9. 336

10. 56

11. 36

12. 2

13. 6

14. 24

15.
1

120

16. 6

17. 4

18. 12

19. 720

20.
1
6

21. 10

22. 200

Problem Set 2.2.11:
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1. −1
2

2.
8
3

3. 0

4. 1

5.
1
2

6. −10

7. −1
2

8. −1

9. 10

10.
1
3

11. 112.5

12. 36

13. 0

14. −1

15. 0

16.
1
2

17. 1

18. −2

19. −2

20. −1

21. 108

22. −1

23. −1

24. 45

25.
14
9

26. 1

27. 12

28. −1

29. 2

30. 15

31. −4

32. 3

33. 225

34.
1
3

35.
√

2
2

36. −1

37. −1

38.
3
2

39. −1

40.
1
2

41. 0

42. −1
3

43. 1

44. −1
3

45. −3
4

46. −1
2

47. 45

48.
1
2

49. −3
4

50.
1
4

51.
6
5

52.
1
4

53.
1
3

54.
1
4

55. 4

56.
1
2

57. −3
4

58. −1
4

59. 3
1
2

Problem Set 2.2.12:

1. 1

2.
1
2

3.
1
2

4. −1
2

5.
3
4

6. 68

7.
3
4

8. −1
2

9. 3

10.
1
2

11. −1
4

12. 308
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13. −1
2

14.
1
2

15.
1
4

16.
1
2

17.
1
2

18.
7
25

19.
1
2

20.
1
4

21. −1
2

22. 1

23. −1
2

24. 1

25.
1
2

26. −1
2

27. −2

Problem Set 2.2.13:

1. 4

2. 5

3. 2

4. 3

5. 8

6. −3

7. 5

8. −2

9.
π

6

10.
1
2

11. 10π

12. 2

Problem Set 2.2.14:

1. −9 2. −5 3. 1
1
4

Problem Set 2.2.15:

1. −2

2. − 1
24

3.
2
3

4.
√

17

5.
4
3

6. −1
3

Problem Set 3.1.1:

1. 7

2. 320

3. 108

4. 24

5. 9

6. 315

7. 12

8. 285

9. 13

10. 364

11. 6

12. 18

13. 108

14. 324

159



15. 4

16. 102

17. 216

18. 84

19. 432

20. 420

21. 11

22. 144

23. 17

24. −260

25. 160

26. 420

27. 72

28. 42

29. 288

30. 108

31. 22

32. 693

33. 96

34. 201

35. 336

36. 63

37. 144

38. −76

39. 14

40. 720

41. 360

42. 168

Problem Set 3.1.3:

1. −64

2. 1728

3. 0

4. 8

5. 64

6. 4

7. 32

8. 0

9. 16

10. 96

11. 128

12. 9

13. 128

14. 1458

15. 2500

16. −2

17. −3456

18. 16

19. 16000

Problem Set 3.1.4:

1.
3
2

2. 9

3.
2
3

4. −7

5. 0

6. −3
4

7. 3

8. −3
5

9.
1
4

10. −2
3

11. 0

12.
5
2

13.
3
5

14.
1
6

15. −3

16. −2

17. −1
4

18. 2

19. 7

20. −36
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21. 3 22. −3
4

23. −1
4

24. 0
25. −4

Problem Set 3.1.5:

1. 9

2. 9

3. 6

4. 3

5. 3

6. 7

7. −1

8. −1

9. 6

Problem Set 3.2.6:

1. 1224

2. 630.9

3.
1
8

4. 2

5.
2
7

6.
1
64

7. 289

8. 29.2

9. 2.5

10. 324

11. 216

12. 2
2
3

13.
4
3

14. 0

15. −6

16. 343

17. 13

18. 4

19. 144

20. 2

21. 10

22. 0

23. 25

Problem Set 3.1.7:

1.
1
9

2. 2

3. 2

4. 6

5. −3

6.
4
3

7. 9

8. 7

9. −3

10. 1

11. 3

12. 1

13. 3

14. 1

15.
8
3

16. 1

17. 6

18. 2

19. 5

20. 3
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21. 3

22. 1
1
2

23. 2

24. 1

25. −.5

26. 0

27.
3
4

28. 243

29. 1

30. 4

31. 2

32. 0

33.
3
2

34. 0

35. −1.5

36. 22

37. 0

38. 8

39. 5

40. (*) 791− 876

41. .5

42. 2

43. 8

44.
1
16

45. 9

46. 12

47. 8

48. 1

49. 16

50.
1
3

51.
1
2

Problem Set 3.1.8:

1. 45

2. 60

3. 66

4. 78

5. 36

6. 28

7. 22

8. 48

9. 36

10.
3
4

11.
2
3

12. 40

Problem Set 3.1.9:

1. (*) 117− 131

2. 94

3. (*) 145− 161

4. (*) 172− 191

5. (*) 2430− 2686

6. 87

7. (*) 2368− 2618

8. (*) 395− 438

9. (*) 2407− 2661

10. (*) 887− 981

11. (*) 496− 549

12. (*) 186− 207

13. (*) 170− 189

14. (*) 128− 142

15. (*) 150− 167

16. (*) 489− 541

17. (*) 271− 301

18. (*) 486− 539

19. (*) 831− 919

20. (*) 270− 299

21. (*) 296− 328

22. (*) 279− 309

23. (*) 7276− 8043

24. (*) 200220−
221297
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25. (*) 26596− 29397

26. (*) 197162−

217917

27. (*) 217− 241
28. (*) 62366− 68932

29. (*) 1258− 1392

Problem Set 3.1.10:

1. 15

2. 61

3. −6

4. 24

5. 54

6. 48

7.
3
2

8. 25

9. 1600

10. 1

11. −44

12. 31

13. 9

14. 15

15. 53

16. −7

17. −7

18. 50

19. −41

20. 7

21. 0

22. 41

23. 3721

24. −243

25. 4

26. 0

27. 16 + 16i

28. 1

29.
12
13

30. −64

31.
1
5

32. 625

33.
12
13

34. 169

Problem Set 3.1.11:

1. −4
3

2. 2.5

3.
1
3

4. 3

5. −7
3

6.
2
3

7. 1

8. 3
1
2

9. −3

10. −4

11. 1

12. −1

13. 1

14. −5

15. −2
3

16. 1

17.
7
3

18. −2

19. 0

20. 2

21. −1

22. 7

23. 1

24. 7
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Problem Set 3.1.12:

1. 17

2. 110

3. 65

4. 91

5. 217

6. 720

7. 26

8. 256

9. 110

10. 398

11. 101

12. 46

13. 513

14. 511

15. 45

16. .25

Problem Set 3.1.13:

1.
1
12

2.
1
18

3.
3
18

4.
1
7

5.
9
13

6.
4
5

7.
13
20

8.
1

216

9.
3
8

10.
9
8

11.
1
3

12.
7
29

13.
5
4

14.
5
8

15.
3
5

16.
1
25

17.
5
4

18.
3
5

19.
3
2

20.
1
18

21.
1
6

22.
1
5

23.
5
13

24.
1
4

25.
7
36

26.
1
2

27.
1
3

28.
5
6

29.
3
4

30.
1
5

31.
1
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Problem Set 3.1.14:

1. 4

2. 32

3. 16

4. 5

5. 1

6. 3

7. 4

8. 5

9. 4

10. 5

11. 4

12. 2

13. 8

14. 7
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15. 5

16. 6

17. 4

18. 254

19. 15

20. 15

21. 1

Problem Set 3.2.1:

1. 57

2. 1230

3. 254

4. 103

5. 102

6. 312

7. 1010

8. 11000

9. 1010

10. 1210

11. 110

12. 21

13. 404

14. 234

15. 1414

16. 27

17. 202

18. 3210

19. 2300

20. 333

21. 250

22. 72

23. 10101

24. 1101

25. 1355

26. 9

27. 443

28. 102

29. 1101

30. 1011

31. 2220

32. 140

33. 104

34. 69

35. 10101

36. 1323

37. 1331

38. 1414

39. 1234

40. 2332

41. 5

42. 32

43. 100

44. 38

45. 25

Problem Set 3.2.2:

1.
17
25

2.
19
25

3.
57
343

4.
15
16

5.
69
125

6.
9
16

7.
7
12

8.
13
24

9.
52
125

10.
35
36

11.
124
125

12.
24
25

13.
9
25

14. .21
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15. .55

16. .33
17. .74

18. .21

19. .42

Problem Set 3.2.3:

1. 120

2. 340

3. 10

4. 341

5. 4

6. 115

7. 181

8. 12

9. 35

10. 22

11. −44

12. 606

13. 33

14. 31

15. 1102

16. 210

17. 121

18. 201

19. 143

20. 220

21. 24

22. 30

23. 32

24. 142

25. 21

26. 34

27. 1221

28. 44

29. 1331

30. 31

31. 64

32. 1221

33. 121

34. 231

35. 330

36. 222

37. 124

38. 1331

Problem Set 3.2.4:

1. 1120

2. 1122

3. 133

4. 11011

5. 78

6. 11100101

7. 11011

8. 223

9. 101101

10. 100011010

11. 110110

12. 33

13. 23

14. 11011

15. 123

Problem Set 3.2.6:
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1.
5
6

2. 3
3.

6
7

4.
7
8

5.
1
4

Problem Set 3.3.2:

1.
3
11

2.
41
99

3.
7
33

4.
9
11

5.
4
11

6.
2
99

7.
8
11

8.
5
33

9.
308
999

10.
77
333

11.
101
333

12.
11
111

Problem Set 3.3.3:

1.
7
30

2.
29
90

3.
19
90

4.
29
90

5.
11
900

Problem Set 3.3.4:

1.
211
990

2.
61
495

3.
229
990

4.
151
494

5.
203
990

6.
311
990

7.
269
990

8.
233
990

9.
47
990

10.
106
495

11.
61
495

Problem Set 3.4:

1. 3

2. 4

3. 1

4. 4

5. 2

6. 3

7. 1

8. 5

9. 2

10. 4

11. 2

12. 1

13. 3

14. 9
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Problem Set 3.5.1:

1. 719

2. 5039
3. 40319

4. −20

5. 152

Problem Set 3.5.2:

1. 8
1
7

2. 10
1
9

3. 6
5
6

4. 10
9
10

5. −100

6. 600

7.
1
15

8. −12

9. −113

10. 120

11. −718

12. 32

13. 4

14. 15

15. 5

16. 35

17. −80

18. 48

19. −9

20. 60

Problem Set 3.5.3:

1. 0

2. 6
3. 1

4. 6

5. 3
6. 0

Problem Set 3.6.1:

1.
3
7

2. 2

3. 4

4. 3

5. 4

6. 27

7. 0

8.
9
2

Problem Set 3.6.2:

1. −11

2. 2

3. 12

4. 5

5. 78

6. −8

7. 24

8. 60
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9. −32

10. −52

11. 18

12. 2

13. −15

14. 14

15. 4

16. 172

17. 19

18. 6

19. 18

20. −7

21. 1

22. 24

23. 54

24. −68

25. 54

26. 24

27. −224

28. 84

29. −2

Problem Set 3.6.3:

1. 8
2
3

2. 6

3. 15

4. 18

5. 4

6.
4
7

7. 4
2
3

8. 12

9. 2

10. 0

11.
3
2

12. 8
2
3

13. 6

14.
2
3

15.
1
3

16.
2
3

17. 5
1
3

18. 6

19. 9

20. 2

21. 4

22. 4

23. −3

24. 12

25.
3
5

26. 84

27. 2

28.
2
3

29.
3
4

30. 9

31.
18
5

32. 3
3
4

33. 4

34. 6

35. 2

36. 3

37. 4

38. 1
1
2

39. 6
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